Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 18(5): e0012184, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38768248

RESUMO

BACKGROUND: Dengue is a major public health concern in Reunion Island, marked by recurrent epidemics, including successive outbreaks of dengue virus serotypes 1 and 2 (DENV1 and DENV2) with over 70,000 cases confirmed since 2017. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we used Oxford Nanopore NGS technology for sequencing virologically-confirmed samples and clinical isolates collected between 2012 and 2022 to investigate the molecular epidemiology and evolution of DENV in Reunion Island. Here, we generated and analyzed a total of 499 DENV1, 360 DENV2, and 18 DENV3 sequences. By phylogenetic analysis, we show that different genotypes and variants of DENV have circulated in the past decade that likely originated from Seychelles, Mayotte and Southeast Asia and highly affected areas in Asia and Africa. CONCLUSIONS/SIGNIFICANCE: DENV sequences from Reunion Island exhibit a high genetic diversity which suggests regular introductions of new viral lineages from various Indian Ocean islands. The insights from our phylogenetic analysis may inform local health authorities about the endemicity of DENV variants circulating in Reunion Island and may improve dengue management and surveillance. This work emphasizes the importance of strong local coordination and collaboration to inform public health stakeholders in Reunion Island, neighboring areas, and mainland France.


Assuntos
Vírus da Dengue , Dengue , Variação Genética , Genótipo , Filogenia , Vírus da Dengue/genética , Vírus da Dengue/classificação , Vírus da Dengue/isolamento & purificação , Humanos , Dengue/epidemiologia , Dengue/virologia , Reunião/epidemiologia , Epidemiologia Molecular , Sorogrupo , Surtos de Doenças , Sequenciamento de Nucleotídeos em Larga Escala
2.
Euro Surveill ; 29(13)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38551097

RESUMO

In 2023, dengue virus serotype 2 (DENV2) affected most French overseas territories. In the French Caribbean Islands, viral circulation continues with > 30,000 suspected infections by March 2024. Genome sequence analysis reveals that the epidemic lineage in the French Caribbean islands has also become established in French Guiana but not Réunion. It has moreover seeded autochthonous circulation events in mainland France. To guide prevention of further inter-territorial spread and DENV introduction in non-endemic settings, continued molecular surveillance and mosquito control are essential.


Assuntos
Epidemias , Humanos , Guiana Francesa/epidemiologia , Epidemiologia Molecular , Índias Ocidentais/epidemiologia , França/epidemiologia
3.
Int J Mol Sci ; 23(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35887383

RESUMO

Mesenchymal stem cells (MSCs) play a critical role in response to stress such as infection. They initiate the removal of cell debris, exert major immunoregulatory activities, control pathogens, and lead to a remodeling/scarring phase. Thus, host-derived 'danger' factors released from damaged/infected cells (called alarmins, e.g., HMGB1, ATP, DNA) as well as pathogen-associated molecular patterns (LPS, single strand RNA) can activate MSCs located in the parenchyma and around vessels to upregulate the expression of growth factors and chemoattractant molecules that influence immune cell recruitment and stem cell mobilization. MSC, in an ultimate contribution to tissue repair, may also directly trans- or de-differentiate into specific cellular phenotypes such as osteoblasts, chondrocytes, lipofibroblasts, myofibroblasts, Schwann cells, and they may somehow recapitulate their neural crest embryonic origin. Failure to terminate such repair processes induces pathological scarring, termed fibrosis, or vascular calcification. Interestingly, many viruses and particularly those associated to chronic infection and inflammation may hijack and polarize MSC's immune regulatory activities. Several reports argue that MSC may constitute immune privileged sanctuaries for viruses and contributing to long-lasting effects posing infectious challenges, such as viruses rebounding in immunocompromised patients or following regenerative medicine therapies using MSC. We will herein review the capacity of several viruses not only to infect but also to polarize directly or indirectly the functions of MSC (immunoregulation, differentiation potential, and tissue repair) in clinical settings.


Assuntos
Células-Tronco Mesenquimais , Vírus , Diferenciação Celular , Condrócitos/metabolismo , Cicatriz/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo
4.
Viruses ; 14(6)2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35746600

RESUMO

Flaviviruses replicate in membrane factories associated with the endoplasmic reticulum (ER). Significant levels of flavivirus viral protein accumulation contribute to ER stress. As a consequence, the host cell exhibits an Unfolded Protein Response (UPR), subsequently stimulating appropriate cellular responses such as adaptation, autophagy or apoptosis. The correct redox conditions of this compartment are essential to forming native disulfide bonds in proteins. Zika virus (ZIKV) has the ability to induce persistent ER stress leading to the activation of UPR pathways. In this study, we wondered whether ZIKV affects the redox balance and consequently the oxidative protein folding in the ER. We found that ZIKV replication influences the redox state, leading to the aggregation of the viral envelope protein as amyloid-like structures in the infected cells.


Assuntos
Flavivirus , Infecção por Zika virus , Zika virus , Dissulfetos , Estresse do Retículo Endoplasmático , Flavivirus/metabolismo , Humanos , Oxirredução , Resposta a Proteínas não Dobradas , Replicação Viral/fisiologia , Zika virus/fisiologia
5.
J Immunol Methods ; 495: 113082, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34051226

RESUMO

The development of new diagnostic assays become a priority for managing COVID-19. To this aim, we presented here an in-house ELISA based on the production of two major recombinant and high-quality antigens from SARS-CoV-2. Full-length N and S-RBD fragment proteins fused to mouse IgG2a-Fc were produced in the CHO cell line. Secreted recombinant proteins were easily purified with standard Protein A chromatography and were used in an in-house ELISA to detect anti-N and anti-RBD IgGs in the plasma of COVID-19 RTPCR-positive patients. High reactivity against recombinant antigens was readily detected in all positive plasma samples, whereas no recognition was observed with control healthy subject's plasmas. Remarkably, unpurified recombinant N protein obtained from cell culture supernatant was also suitable for the monitoring by ELISA of IgG levels in positive patients. This work provides an early prospection for low price but high-quality serological kit development.


Assuntos
Teste Sorológico para COVID-19/métodos , COVID-19/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/metabolismo , Proteínas Recombinantes/metabolismo , SARS-CoV-2/fisiologia , Animais , Anticorpos Antivirais/sangue , Células CHO , Teste Sorológico para COVID-19/economia , Custos e Análise de Custo , Cricetulus , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Imunoglobulina G/genética , Proteínas Recombinantes/genética , Sensibilidade e Especificidade , Glicoproteína da Espícula de Coronavírus/imunologia
6.
Vaccines (Basel) ; 9(3)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808706

RESUMO

The neurological complications of infection by the mosquito-borne Zika virus (ZIKV) include Guillain-Barré syndrome (GBS), an acute inflammatory demyelinating polyneuritis. GBS was first associated with recent ZIKV epidemics caused by the emergence of the ZIKV Asian lineage in South Pacific. Here, we hypothesize that ZIKV-associated GBS relates to a molecular mimicry between viral envelope E (E) protein and neural proteins involved in GBS. The analysis of the ZIKV epidemic strains showed that the glycan loop (GL) region of the E protein includes an IVNDT motif which is conserved in voltage-dependent L-type calcium channel subunit alpha-1C (Cav1.2) and Heat Shock 70 kDa protein 12A (HSP70 12A). Both VSCC-alpha 1C and HSP70 12A belong to protein families which have been associated with neurological autoimmune diseases in central nervous system. The purpose of our in silico analysis is to point out that IVNDT motif of ZIKV E-GL region should be taken in consideration for the development of safe and effective anti-Zika vaccines by precluding the possibility of adverse neurologic events including autoimmune diseases such as GBS through a potent mimicry with Heat Shock 70 kDa protein 12A (HSP70 12A).

7.
Int J Mol Sci ; 22(7)2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916874

RESUMO

Zika virus (ZIKV) is an emerging mosquito-borne flavivirus considered as a threat to human health due to large epidemics and serious clinical outcomes such as microcephaly in new-borns. Like all flaviviruses, ZIKV relies on the cellular machinery to complete its viral cycle, with the endoplasmic reticulum (ER) being the critical site of viral replication factories. The sudden high protein load in the ER induces an ER stress to which the cell responds with an appropriate unfolded protein response (UPR) in an attempt to restore its disturbed homeostasis. When the restoration fails, the cell signalling leads to a programmed cell death by apoptosis with the upregulation of the UPR-induced C/EBP homologous protein (CHOP) which acts as the main trigger for this fatal outcome. Our previous studies have shown the ability of ZIKV to manipulate various cellular responses in order to optimize virus production. ZIKV is able to delay apoptosis to its benefit and although ER stress is induced, the UPR is not complete. Here we discovered that ZIKV impairs the expression of CHOP/DDIT3, the main factor responsible of ER-stress driven apoptosis. Surprisingly, the mechanism does not take place at the transcriptional level but at the translational level.


Assuntos
Apoptose , Estresse do Retículo Endoplasmático , Fator de Transcrição CHOP/metabolismo , Transcrição Gênica , Infecção por Zika virus/metabolismo , Zika virus/metabolismo , Células A549 , Humanos
8.
J Clin Med ; 9(12)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260801

RESUMO

Humoral immunity is critically important to control COVID-19. Long-term antibody responses remain to be fully characterized in hospitalized patients who have a high risk of death. We compared specific Immunoglobulin responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) between two groups, intensive care unit (ICU) and non-ICU hospitalized patients over several weeks. Plasma specific IgG, IgM, and IgA levels were assessed using a commercial ELISA and compared to an in-house cell-based ELISA. Among the patients analyzed (mean (SD) of age, 64.4 (15.9) years, 19.2% female), 12 (46.2%) were hospitalized in ICU. IgG levels increased in non-ICU cases from the second to the eighth week after symptom onset. By contrast, IgG response was blunted in ICU patients over the same period. ICU patients with hematological malignancies had very weak or even undetectable IgG levels. While both groups had comparable levels of specific IgM antibodies, we found much lower levels of specific IgA in ICU versus non-ICU patients. In conclusion, COVID-19 ICU patients may be at risk of reinfection as their specific IgG response is declining in a matter of weeks. Antibody neutralizing assays and studies on specific cellular immunity will have to be performed.

9.
Viruses ; 12(11)2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167511

RESUMO

Mosquito-borne Zika virus (ZIKV) causes a severe congenital syndrome and neurological disorders in humans. With the aim to develop a live-attenuated ZIKV strain, we generated a chimeric viral clone ZIKALIVax with African MR766-NIID strain as backbone and the envelope E protein of epidemic Brazilian BeH810915 strain. The MR766-NIID residues E-T152/I156/Y158 were introduced into BeH810915 E protein leading to a nonglycosylated ZIKALIVax. Recently, we reported that the residues E-152/156/158 that are part of ZIKV glycan loop (GL) region might have an impact on the availability of neutralizing antibody epitopes on ZIKV surface. In the present study, we evaluated the antigenic reactivity of a synthetic 20-mer peptide representing the ZIKALIVax GL region. The GL-related peptide was effective for the detection of GL-reactive antibody in mouse anti-ZIKALIVax immune serum. We showed that the residue E-158 influences the antigenic reactivity of GL-related peptide. The ZIKALIVax peptide was effective in generating mouse antibodies with reactivity against a recombinant E domain I that encompasses the GL region. The GL peptide-reactive antibodies revealed that antigenic reactivity of E-domain I may be impacted by both residues E-152 and E-156. In conclusion, we proposed a role for the residues E-152/156/158 as key antigenic determinants of ZIKV glycan loop region.


Assuntos
Anticorpos Antivirais/sangue , Epitopos/imunologia , Peptídeos/imunologia , Polissacarídeos/imunologia , Zika virus/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Zika virus/genética , Infecção por Zika virus/imunologia
10.
Int J Mol Sci ; 21(16)2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32824753

RESUMO

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 and its associated pathology, COVID-19, have been of particular concerns these last months due to the worldwide burden they represent. The number of cases requiring intensive care being the critical point in this epidemic, a better understanding of the pathophysiology leading to these severe cases is urgently needed. Tissue lesions can be caused by the pathogen or can be driven by an overwhelmed immune response. Focusing on SARS-CoV-2, we and others have observed that this virus can trigger indeed an immune response that can be dysregulated in severe patients and leading to further injury to multiple organs. The purpose of the review is to bring to light the current knowledge about SARS-CoV-2 virologic and immunologic features. Thus, we address virus biology, life cycle, tropism for many organs and how ultimately it will affect several host biological and physiological functions, notably the immune response. Given that therapeutic avenues are now highly warranted, we also discuss the immunotherapies available to manage the infection and the clinical outcomes.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus , Pandemias , Pneumonia Viral , Fatores Etários , Enzima de Conversão de Angiotensina 2 , COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/terapia , RNA-Polimerase RNA-Dependente de Coronavírus , Citocinas/sangue , Humanos , Imunoterapia/métodos , Pulmão/patologia , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/imunologia , Pneumonia Viral/patologia , Pneumonia Viral/terapia , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2 , Proteínas não Estruturais Virais/metabolismo , Tropismo Viral/fisiologia , Montagem de Vírus/fisiologia , Replicação Viral/fisiologia
11.
Biochimie ; 175: 99-105, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32464166

RESUMO

Flaviviruses replicate in membranous factories associated with the endoplasmic reticulum (ER). Significant levels of flavivirus polyprotein integration contribute to ER stress and the host cell may exhibit an Unfolded Protein Response (UPR) to this protein accumulation, stimulating appropriate cellular responses such as adaptation, autophagy or cell death. These different stress responses support other antiviral strategies initiated by infected cells and can help to overcome viral infection. In epithelial A549 cells, a model currently used to study the flavivirus infection cycle and the host cell responses, all three pathways leading to UPR are activated during infection by Dengue virus (DENV), Yellow Fever virus (YFV) or West Nile virus (WNV). In the present study, we investigated the capacity of ZIKA virus (ZIKV) to induce ER stress in A549 cells. We observed that the cells respond to ZIKV infection by implementing an UPR through activation of the IRE1 and PERK pathway without activation of the ATF6 branch. By modulating the ER stress response, we found that UPR inducers significantly inhibit ZIKV replication. Interestingly, our findings provide evidence that ZIKV could manipulate the UPR to escape this host cell defence system by downregulating GRP78/BiP expression. This subversion of GRP78 expression could lead to unresolved and persistent ER stress which can be a benefit for virus growth.


Assuntos
Regulação da Expressão Gênica , Proteínas de Choque Térmico/biossíntese , Resposta a Proteínas não Dobradas , Replicação Viral , Infecção por Zika virus/metabolismo , Zika virus/fisiologia , Células A549 , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Humanos , Infecção por Zika virus/genética , Infecção por Zika virus/patologia
12.
Anal Biochem ; 601: 113775, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32416096

RESUMO

Accumulation of misfolded proteins within the endoplasmic reticulum (ER) induces an unfolded protein response (UPR) that either restores homeostasis or triggers apoptosis in case of adaptation failure. The three activated branches of UPR lead to IRE1-, PERK- and ATF6- dependent transcriptional induction of the gene encoding the transcription factor C/EBP homologous protein (CHOP) which plays an important role in apoptosis induction. In conventional immunoblotting conditions, detection of CHOP is a difficult task. Using a fixation step, we have optimized the detection of CHOP and this method provides a valuable tool to decipher CHOP involvement in UPR.


Assuntos
Western Blotting , Fator de Transcrição CHOP/análise , Células A549 , Retículo Endoplasmático/química , Humanos , Resposta a Proteínas não Dobradas
13.
Cells ; 8(11)2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671831

RESUMO

Zika virus (ZIKV) is an emerging human mosquito-transmitted pathogen of global concern, known to be associated with complications such as congenital defects and neurological disorders in adults. ZIKV infection is associated with induction of cell death. However, previous studies suggest that the virally induced apoptosis occurs at a slower rate compared to the course of viral production. In this present study, we investigated the capacity of ZIKV to delay host cell apoptosis. We provide evidence that ZIKV has the ability to interfere with apoptosis whether it is intrinsically or extrinsically induced. In cells expressing viral replicon-type constructions, we show that this control is achieved through replication. Finally, our work highlights an important role for anti-apoptotic Bcl-2 family protein in the ability of ZIKV to control apoptotic pathways, avoiding premature cell death and thereby promoting virus replication in the host-cell.


Assuntos
Morte Celular/genética , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Infecção por Zika virus/patologia , Zika virus/fisiologia , Células A549 , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/fisiologia , Chlorocebus aethiops , Células HEK293 , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Células Vero , Replicação Viral/fisiologia , Infecção por Zika virus/genética
14.
Cells ; 8(11)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31731738

RESUMO

Emerging infections of mosquito-borne Zika virus (ZIKV) pose an increasing threat to human health, as documented over the recent years in South Pacific islands and the Americas in recent years. To better understand molecular mechanisms underlying the increase in human cases with severe pathologies, we recently demonstrated the functional roles of structural proteins capsid (C), pre-membrane (prM), and envelop (E) of ZIKV epidemic strains with the initiation of viral infection in human cells. Specifically, we found that the C-prM region contributes to permissiveness of human host cells to ZIKV infection and ZIKV-induced cytopathic effects, whereas the E protein is associated with viral attachment and early infection. In the present study, we further characterize ZIKV E proteins by investigating the roles of residues isoleucine 152 (Ile152), threonine 156 (Thr156), and histidine 158 (His158) (i.e., the E-152/156/158 residues), which surround a unique N-glycosylation site (E-154), in permissiveness of human host cells to epidemic ZIKV infection. For comparison purpose, we generated mutant molecular clones of epidemic BeH819015 (BR15) and historical MR766-NIID (MR766) strains that carry each other's E-152/156/158 residues, respectively. We observed that the BR15 mutant containing the E-152/156/158 residues from MR766 was less infectious in A549-Dual™ cells than parental virus. In contrast, the MR766 mutant containing E-152/156/158 residues from BR15 displayed increased infectivity. The observed differences in infectivity were, however, not correlated with changes in viral binding onto host-cells or cellular responses to viral infection. Instead, the E-152/156/158 residues from BR15 were associated with an increased efficiency of viral membrane fusion inside infected cells due to conformational changes of E protein that enhance exposure of the fusion loop. Our data highlight an important contribution of E-152/156/158 residues to the early steps of ZIKV infection in human cells.


Assuntos
Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Infecção por Zika virus/virologia , Zika virus/patogenicidade , Células A549 , Motivos de Aminoácidos , Animais , Chlorocebus aethiops , Células HEK293 , Interações entre Hospedeiro e Microrganismos , Humanos , Mutação , Células Vero , Proteínas do Envelope Viral/metabolismo , Replicação Viral , Zika virus/genética , Zika virus/metabolismo
15.
Vaccines (Basel) ; 7(3)2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31315283

RESUMO

Zika virus (ZIKV) is an emerging arthropod-borne virus of major public health concern. ZIKV infection is responsible for congenital Zika disease and other neurological defects. Antibody-mediated virus neutralization is an essential component of protective antiviral immunity against ZIKV. In the present study, we assessed whether our GFP reporter ZIKV derived from African viral strain MR766 could be useful for the development of a flow cytometry neutralization test (FNT), as an alternative to the conventional plaque-reduction neutralization test (PRNT). To improve the efficacy of GFP-expressing MR766, we selected virus variant MR766GFP showing a high level of GFP signal in infected cells. A MR766GFP-based FNT was assayed with immune sera from adult mice that received ZIKBeHMR-2. The chimeric ZIKV clone ZIKBeHMR-2 comprises the structural protein region of epidemic strain BeH819015 into MR766 backbone. We reported that adult mice inoculated with ZIKBeHMR-2 developed high levels of neutralizing anti-ZIKV antibodies. Comparative analysis between MR766GFP-based FNT and conventional PRNT was performed using mouse anti-ZIKBeHMR-2 immune sera. Indistinguishable neutralization patterns were observed when compared with PRNT50 and FNT50. We consider that the newly developed MR766GFP-based FNT is a valid format for measuring ZIKV-neutralizing antibodies in serum specimens.

16.
Vaccines (Basel) ; 7(2)2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31238493

RESUMO

Zika virus (ZIKV) is an emerging mosquito-borne flavivirus which is of major public health concern. ZIKV infection is recognized as the cause of congenital Zika disease and other neurological defects, with no specific prophylactic or therapeutic treatments. As the humoral immune response is an essential component of protective immunity, there is an urgent need for effective vaccines that confer protection against ZIKV infection. In the present study, we evaluate the immunogenicity of chimeric viral clone ZIKBeHMR-2, in which the region encoding the structural proteins of the African strain MR766 backbone was replaced with its counterpart from the epidemic strain BeH819015. Three amino-acid substitutions I152T, T156I, and H158Y were introduced in the glycan loop of the E protein (E-GL) making ZIKBeHMR-2 a non-glycosylated virus. Adult BALB/c mice inoculated intraperitoneally with ZIKBeHMR-2 developed anti-ZIKV antibodies directed against viral proteins E and NS1 and a booster dose increased antibody titers. Immunization with ZIKBeHMR-2 resulted in a rapid production of neutralizing anti-ZIKV antibodies. Antibody-mediated ZIKV neutralization was effective against viral strain MR766, whereas epidemic ZIKV strains were poorly sensitive to neutralization by anti-ZIKBeHMR-2 immune sera. From our data, we propose that the three E-GL residues at positions E-152, E-156, and E-158 greatly influence the accessibility of neutralizing antibody epitopes on ZIKV.

17.
Viruses ; 11(1)2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30577437

RESUMO

Heme oxygenase-1 (HO-1), a rate-limiting enzyme involved in the degradation of heme, is induced in response to a wide range of stress conditions. HO-1 exerts antiviral activity against a broad range of viruses, including the Hepatitis C virus, the human immunodeficiency virus, and the dengue virus by inhibiting viral growth. It has been reported that HO-1 displays antiviral activity against the Zika virus (ZIKV) but the mechanisms of viral inhibition remain largely unknown. Using a ZIKV RNA replicon with the Green Fluorescent Protein (GFP) as a reporter protein, we were able to show that HO-1 expression resulted in the inhibition of viral RNA replication. Conversely, we observed a decrease in HO-1 expression in cells replicating the ZIKV RNA replicon. The study of human cells infected with ZIKV showed that the HO-1 expression level was significantly lower once viral replication was established, thereby limiting the antiviral effect of HO-1. Our work highlights the capacity of ZIKV to thwart the anti-replicative activity of HO-1 in human cells. Therefore, the modulation of HO-1 as a novel therapeutic strategy against ZIKV infection may display limited effect.


Assuntos
Heme Oxigenase-1/metabolismo , Replicação Viral , Zika virus/fisiologia , Replicação do DNA , Regulação para Baixo , Proteínas de Fluorescência Verde , Células HEK293 , Heme/metabolismo , Heme Oxigenase-1/genética , Hemina/farmacologia , Humanos , RNA Viral , Replicon , Zika virus/genética , Infecção por Zika virus/tratamento farmacológico
18.
Virology ; 493: 217-26, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27060565

RESUMO

Zika virus (ZIKV) is an emerging flavivirus since the first epidemics in South Pacific in 2007. The recent finding that ZIKV is now circulating in Western Hemisphere and can be associated to severe human diseases, warrants the need for its study. Here we evaluate the susceptibility of human lung epithelial A549 cells to South Pacific epidemic strain of ZIKV isolated in 2013. We showed that ZIKV growth in A549 cells is greatly efficient. ZIKV infection resulted in the secretion of IFN-ß followed by the expression of pro-inflammatory cytokines such as IL-1ß, and transcriptional activity of IFIT genes. At the maximum of virus progeny production, ZIKV triggers mitochondrial apoptosis through activation of caspases-3 and -9. Whereas at early infection times, the rapid release of IFN-ß which exerts an antiviral effect against ZIKV might delay apoptosis in infected cells.


Assuntos
Células Epiteliais Alveolares/virologia , Apoptose , Interferon beta/biossíntese , Replicação Viral , Zika virus/fisiologia , Células A549 , Células Epiteliais Alveolares/metabolismo , Animais , Autofagia , Chlorocebus aethiops , Citocinas/biossíntese , Humanos , Interferon beta/genética , Interferon beta/metabolismo , Mitocôndrias , Células Vero
19.
Biochem Biophys Rep ; 8: 151-156, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28955951

RESUMO

Arthritogenic alphaviruses are emerging arthropod-borne viruses that occasionally cause sporadic to global outbreaks all over the world. Many environmental factors including xenobiotics have been identified as capable of influencing the spread, the susceptibility and the outcome of viral infection. Among them cadmium is a toxic non-essential heavy metal and a prevalent environmental contaminant. In the present study we evaluated the effect of cadmium exposure on alphavirus infection in vitro. We infected Human Embryonic Kidney (HEK) 293 cells in the presence of cadmium chloride (CdCl2) with Sindbis virus. Cell viability, apoptosis and viral growth were then examined. Our data show that effective doses of cadmium decreased the virus mediated-cell death by inhibition of apoptosis. Moreover, virus growth in HEK 293 cells was also reduced by CdCl2 treatment. Altogether our results demonstrate that cadmium triggers a protective response which renders HEK 293 cells resistant against Sindbis virus infection.

20.
Am J Physiol Cell Physiol ; 305(6): C654-62, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23842529

RESUMO

Anion exchanger 1 (AE1) or band 3 is a membrane protein responsible for the rapid exchange of chloride for bicarbonate across the red blood cell membrane. Nine mutations leading to single amino-acid substitutions in the transmembrane domain of AE1 are associated with dominant hereditary stomatocytosis, monovalent cation leaks, and reduced anion exchange activity. We set up a stopped-flow spectrofluorometry assay coupled with flow cytometry to investigate the anion transport and membrane expression characteristics of wild-type recombinant AE1 in HEK293 cells, using an inducible expression system. Likewise, study of three stomatocytosis-associated mutations (R730C, E758K, and G796R), allowed the validation of our method. Measurement of the rapid and specific chloride/bicarbonate exchange by surface expressed AE1 showed that E758K mutant was fully active compared with wild-type (WT) AE1, whereas R730C and G796R mutants were inactive, reinforcing previously reported data on other experimental models. Stopped-flow analysis of AE1 transport activity in red blood cell ghost preparations revealed a 50% reduction of G796R compared with WT AE1 corresponding to a loss of function of the G796R mutated protein, in accordance with the heterozygous status of the AE1 variant patients. In conclusion, stopped-flow led to measurement of rapid transport kinetics using the natural substrate for AE1 and, conjugated with flow cytometry, allowed a reliable correlation of chloride/bicarbonate exchange to surface expression of AE1, both in recombinant cells and ghosts and therefore a fine comparison of function between different stomatocytosis samples. This technical approach thus provides significant improvements in anion exchange analysis in red blood cells.


Assuntos
Anemia Hemolítica Congênita/sangue , Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Bicarbonatos/metabolismo , Cloretos/metabolismo , Eritrócitos/metabolismo , Substituição de Aminoácidos , Anemia Hemolítica Congênita/genética , Anemia Hemolítica Congênita/patologia , Proteína 1 de Troca de Ânion do Eritrócito/genética , Ânions/metabolismo , Linhagem Celular , Eritrócitos/patologia , Células HEK293 , Heterozigoto , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...