Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 813: 151884, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-34838916

RESUMO

Photodegradation is a significant weathering process that transforms spilled oil, yet, the fate, degradation rate, and molecular transformations that occur through photoinduced pathways remain relatively unknown. The molecular complexity combined with the increased polarity of photoproducts challenges conventional analytical techniques. Here, we catalogue the molecular progression of photochemical transformation products of Macondo Well Oil by negative-ion electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). We track the molecular compositions of oil-soluble, interfacially-active, and water-soluble oil species formed at varying time intervals in photomicrocosm experiments. Short photoirradiation periods (<24 h), not previously reported, are included to reveal rapid photooxidation of native oil components. Surface oil films exposed to solar irradiation were shown to increasingly contribute to the dissolved organic carbon pool as a function of increased irradiation time. FT-ICR MS analysis of acidic species of each fraction identifies tens of thousands of oil-soluble, interfacially-active, and water-soluble phototransformation products, including Ox, NOx, and SOx species. Oil-soluble species incorporate oxygen as a function of irradiation periods. After 96 h of irradiation, ~14 wt% of the photooxidized oil film was interfacially active and contained phototransformed species with up to 12 oxygen atoms per molecule. Water-soluble species correspond to highly oxygenated compounds. Importantly, photochemical oxidation is shown to occur within the first hour. Beyond 24 h, photoproducts remain compositionally similar, highlighting the rapid effect of photodegradation to transform oil species into water-soluble compounds. Molecular fingerprints provided by FT-ICR MS highlight the oxygen dependence on oil/water solubility. Microtox® analysis indicates that the toxicity of water-soluble photoproducts rapidly increases at early irradiation time points (first 24 h) compared to the dark control and reaches a maximum at 6 h of irradiation. Results highlight the temporal, molecular progression of photoproducts as they partition from oil-soluble to oil-soluble interfacially-active, and finally to water-soluble species.


Assuntos
Ácidos , Petróleo , Espectrometria de Massas , Oxirredução , Petróleo/toxicidade , Fotólise
2.
J Am Soc Mass Spectrom ; 30(11): 2306-2317, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31399941

RESUMO

We investigate the gas-phase structures and fragmentation pathways of model compounds of anthracene derivatives of the general formula CcHhN1 utilizing tandem mass spectrometry and computational methods. We vary the substituent alkyl chain length, composition, and degree of branching. We find substantial experimental and theoretical differences between the linear and branched congeners in terms of fragmentation thresholds, available pathways, and distribution of products. Our calculations predict that the linear substituents initially isomerize to form lower energy branched isomers prior to loss of the alkyl substituents as alkenes. The rate-determining chemistry underlying these related processes is dominated by the ability to stabilize the alkene loss transition structures. This task is more effectively undertaken by branched substituents. Consequently, analyte lability systematically increased with degree of branching (linear < secondary < tertiary). The resulting anthracen-9-ylmethaniminium ion generated from these alkene loss reactions undergoes rate-limiting proton transfer to enable expulsion of either hydrogen cyanide or CNH. The combination of the differences in primary fragmentation thresholds and degree of radical-based fragmentation processes provide a potential means of distinguishing compounds that contain branched alkyl chain substituents from those with linear ones.

3.
J Am Soc Mass Spectrom ; 29(8): 1627-1637, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29740760

RESUMO

We characterize the primary fragmentation reactions of three isomeric lithiated D-hexose sugars (glucose, galactose, and mannose) utilizing tandem mass spectrometry, regiospecific labeling, and theory. We provide evidence that these three isomers populate similar fragmentation pathways to produce the abundant cross-ring cleavage peaks (0,2A1 and 0,3A1). These pathways are highly consistent with the prior literature (Hofmeister et al. J. Am. Chem. Soc. 113, 5964-5970, 1991, Bythell et al. J. Am. Soc. Mass Spectrom. 28, 688-703, 2017, Rabus et al. Phys. Chem. Chem. Phys. 19, 25643-25652, 2017) and the present labeling data. However, the structure-specific energetics and rate-determining steps of these reactions differ as a function of precursor sugar and anomeric configuration. The lowest energy water loss pathways involve loss of the anomeric oxygen to furnish B1 ions. For glucose and galactose, the lithiated α-anomers generate ketone structures at C2 in a concerted reaction involving a 1,2-migration of the C2-H to the anomeric carbon (C1). In contrast, the ß-anomers are predicted to form 1,3-anhydroglucose/galactose B1 ion structures. Initiation of the water loss reactions from each anomeric configuration requires distinct reactive conformers, resulting in different product ion structures. Inversion of the stereochemistry at C2 has marked consequences. Both lithiated mannose forms expel water to form 1,2-anhydromannose B1 ions with the newly formed epoxide group above the ring. Additionally, provided water loss is not instantaneous, the α-anomer can also isomerize to generate a ketone structure at C2 in a concerted reaction involving a 1,2-migration of the C2-H to C1. This product is indistinguishable to that from α-glucose. The energetics and interplay of these pathways are discussed. Graphical Abstract ᅟ.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...