Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Obes (Lond) ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777863

RESUMO

OBJECTIVES: Experimental studies indicate a role for galectin-1 and galectin-3 in metabolic disease, but clinical evidence from larger populations is limited. METHODS: We measured circulating levels of galectin-1 and galectin-3 in the Prospective investigation of Obesity, Energy and Metabolism (POEM) study, participants (n = 502, all aged 50 years) and characterized the individual association profiles with metabolic markers, including clinical measures, metabolomics, adipose tissue distribution (Imiomics) and proteomics. RESULTS: Galectin-1 and galectin-3 were associated with fatty acids, lipoproteins and triglycerides including lipid measurements in the metabolomics analysis adjusted for body mass index (BMI). Galectin-1 was associated with several measurements of adiposity, insulin secretion and insulin sensitivity, while galectin-3 was associated with triglyceride-glucose index (TyG) and fasting insulin levels. Both galectins were associated with inflammatory pathways and fatty acid binding protein (FABP)4 and -5-regulated triglyceride metabolic pathways. Galectin-1 was also associated with several proteins related to adipose tissue differentiation. CONCLUSIONS: The association profiles for galectin-1 and galectin-3 indicate overlapping metabolic effects in humans, while the distinctly different associations seen with fat mass, fat distribution, and adipose tissue differentiation markers may suggest a functional role of galectin-1 in obesity.

2.
PLoS One ; 19(4): e0301412, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578722

RESUMO

Galectin-1 plays a functional role in human metabolism and the levels are altered in obesity and type 2 diabetes (T2D). This study investigates the association of cardiorespiratory fitness (CRF) with galectin-1 and the interconnection with body fatness. Cross-sectional data from the Swedish CArdioPulmonary bioImage Study (SCAPIS) pilot was analyzed, including a sample of 774 middle-aged individuals. A submaximal cycle ergometer test was used to estimate CRF as an indirect measure of the physical activity (PA) level. Serum-galectin-1 concentration was determined from venous blood collected after an overnight fast. Body mass index (BMI) was used as an indirect measure of body fatness. CRF was significantly associated with galectin-1, when controlled for age and sex (regression coefficient (regr coeff) = -0.29, p<0.001). The strength of the association was attenuated when BMI was added to the regression model (regr coeff = -0.09, p = 0.07), while the association between BMI and galectin-1 remained strong (regr coeff = 0.40, p<0.001). CRF was associated with BMI (regr coeff = -0.50, p<0.001). The indirect association between CRF and galectin-1 through BMI (-0.50 x 0.40) contributed to 69% of total association (mediation analysis). In group comparisons, individuals with low CRF-high BMI had the highest mean galectin-1 level (25 ng/ml), while individuals with high CRF-low BMI had the lowest level (21 ng/ml). Intermediate levels of galectin-1 were found in the low CRF-low BMI and high CRF-high BMI groups (both 22 ng/ml). The galectin-1 level in the low CRF-high BMI group was significantly different from the other three groups (P<0.001). In conclusion, galectin-1 is associated with CRF as an indirect measure of the PA level through interconnection with body fatness. The size of the association is of clinical relevance.


Assuntos
Aptidão Cardiorrespiratória , Humanos , Pessoa de Meia-Idade , Índice de Massa Corporal , Estudos Transversais , Galectina 1 , Aptidão Física
3.
Clin Exp Immunol ; 215(3): 240-250, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38088456

RESUMO

Type 1 diabetes (T1D) and celiac disease (CeD) are common autoimmune diseases in children where the pathophysiology is not fully characterized. The autoimmune process involves a complex scenario of both inflammatory and regulatory features. Galectin-1 (GAL-1) has a wide range of biological activities e.g. interaction with immune cells. We examined the relationship between GAL-1 and soluble immune markers and T-cell subsets in a cohort of children with T1D and/or CeD relative to healthy children. GAL-1, together with several soluble immune markers [e.g. interleukins (IL)], tumor necrosis factor (TNF), acute phase proteins, and matrix metalloproteinases (MMP) were measured in sera from children with T1D and/or CeD by fluorochrome (Luminex) technique using children without these diseases as a reference. Subgroups of T cells, including T-regulatory (Treg) cells, were analysed by flow cytometry. Association between GAL-1, pro-inflammatory markers, and Treg cells differed depending on which illness combination was present. In children with both T1D and CeD, GAL-1 correlated positively with pro-inflammatory markers (IL-1ß, IL-6, and TNF-α). Composite scores increased the strength of correlation between GAL-1 and pro-inflammatory markers, Th1-associated interferon (IFN)-γ, and T1D-associated visfatin. Contrary, in children diagnosed with exclusively T1D, GAL-1 was positively correlated to CD25hi and CD25hiCD101+ Treg cells. For children with only CeD, no association between GAL-1 and other immune markers was observed. In conclusion, the association observed between GAL-1, soluble immune markers, and Treg cells may indicate a role for GAL-1 in the pathophysiology of T1D and, to some extent, also in CeD.


Assuntos
Benzamidas , Doença Celíaca , Diabetes Mellitus Tipo 1 , Tirosina , Criança , Humanos , Biomarcadores/metabolismo , Doença Celíaca/patologia , Galectina 1/metabolismo , Linfócitos T Reguladores , Fator de Necrose Tumoral alfa/metabolismo , Tirosina/análogos & derivados
4.
EClinicalMedicine ; 59: 101985, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37256099

RESUMO

Background: Phosphodiesterase-5 inhibitors exert positive vascular and metabolic effects in type 2 diabetes (T2D), but the effect on insulin resistance in T2D is unclear. Methods: This randomised, double blind, placebo-controlled, two-period crossover trial was conducted at Sahlgrenska University Hospital (Gothenburg, Sweden). Men without apparent erectile dysfunction (age 40-70 years) and women (age 55-70 years, post-menopause) diagnosed with T2D between 3 months and 10 years, haemoglobin A1c (HbA1c) < 60 mmol/mol and a body mass index (BMI) 27-40 kg/m2 were enrolled. Participants were randomly assigned to one period of oral tadalafil 20 mg once a day and one period of placebo for 6 weeks, separated by an 8-week wash-out period. Placebo and tadalafil tablets were made visually indistinguishable and delivered randomized in two separate boxes for each participant. Both treatment periods ended with a glucose clamp, and measurements of body composition and metabolic markers in blood, subcutaneous and muscular interstitial fluid. The primary aim was to assess difference in whole-body insulin resistance after 6-weeks of treatment, determined after completion of the two study arms, and secondary aims were to study effects of tadalafil on pathophysiology of T2D as well as tolerability of high-dose tadalafil in T2D. Primary analysis was performed in participants with full analysis set (FAS) and safety analysis in all participants who received at least one dose of study medication. This trial is registered with ClinicalTrials.gov (NCT02601989), and EudraCT (2015-000573). Findings: Between January 22nd, 2016, and January 31st, 2019, 23 participants with T2D were enrolled, of whom 18 were included in the full analysis set. The effect of tadalafil on insulin resistance was neutral compared with placebo. However, tadalafil decreased glycaemia measured as HbA1c (mean difference -2.50 mmol/mol, 95% confidence interval (CI), -4.20; -0.78, p = 0.005), and, further, we observed amelioration of endothelial function and markers of liver steatosis and glycolysis, whereas no statistically significant differences of other clinical phenotyping were shown. Muscle pain, dyspepsia, and headache were more frequent in participants on high-dose tadalafil compared with placebo (p < 0.05) but no difference between treatments appeared for serious adverse events. Interpretation: High-dose tadalafil does not decrease whole-body insulin resistance, but increases microcirculation, induces positive effects in the liver and in intermediate metabolites, in parallel with an improved metabolic control measured as HbA1c. High-dose tadalafil is moderately well tolerated, warranting larger trials to define the optimal treatment regimen in T2D. Funding: The Swedish Research Council, Swedish Diabetes Foundation, Novo Nordisk Foundation, the Swedish state under the agreement between the Swedish government and the county councils, the ALF-agreement, Sahlgrenska University Hospital funds, Gothenburg Society of Medicine, Eli Lilly & Company, USA, and Eli Lilly & Company, Sweden AB.

5.
Metabolites ; 12(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36295832

RESUMO

Galectin-1 is a carbohydrate-binding protein expressed in many tissues. In recent years, increasing evidence has emerged for the role of galectin-1 in obesity, insulin resistance and type 2 diabetes. Galectin-1 has been highly conserved through evolution and is involved in key cellular functions such as tissue maturation and homeostasis. It has been shown that galectin-1 increases in obesity, both in the circulation and in the adipose tissue of human and animal models. Several proteomic studies have independently identified an increased galectin-1 expression in the adipose tissue in obesity and in insulin resistance. Large population-based cohorts have demonstrated associations for circulating galectin-1 and markers of insulin resistance and incident type 2 diabetes. Furthermore, galectin-1 is associated with key metabolic pathways including glucose and lipid metabolism, as well as insulin signalling and inflammation. Intervention studies in animal models alter animal weight and metabolic profile. Several studies have also linked galectin-1 to the progression of complications in diabetes, including kidney disease and retinopathy. Here, we review the current knowledge on the clinical potential of galectin-1 in obesity and type 2 diabetes.

6.
PLoS One ; 17(8): e0267833, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36044519

RESUMO

BACKGROUND: The main inhibitor of the fibrinolytic system, Plasminogen Activator Inhibitor -1 (PAI-1), irreversibly binds tissue-type Plasminogen Activator (t-PA) and thereby inhibits the protective action of tPA against thrombus formation. Elevated levels of plasma PAI-1 are associated with an increased risk of cardiovascular events and are observed in subjects with type 2 diabetes (T2D) and obesity. Platelets contain the majority of PAI-1 present in blood and exhibit the ability to synthesis active PAI-1. Diabetic platelets are known to be hyper-reactive and larger in size; however, whether these features affect their contribution to the elevated levels of plasma PAI-1 in T2D is not established. OBJECTIVES: To characterize the PAI-1 antigen content and the mRNA expression in platelets from T2D subjects compared to obese and lean control subjects, in order to elucidate the role of platelet PAI-1 in T2D. METHODS: Nine subjects with T2D and obesity were recruited from Primary Care Centers together with 15 healthy control subjects (8 lean subjects and 7 with obesity). PAI-1 antigen levels in plasma, serum and platelets were determined by ELISA, and PAI-1 mRNA expression was analyzed by qPCR. RESULTS: There was no significant difference in PAI-1 mRNA expression or PAI-1 antigen in platelets in T2D subject in comparison to obese and lean control subjects. An elevated level of plasma PAI-1 was seen in both T2D and obese subjects. PAI-1 gene expression was significantly higher in both obese groups compared to lean. CONCLUSION: Similar levels of protein and mRNA expression of PAI-1 in platelets from T2D, obese and lean subjects indicate a limited role of platelets for the elevated plasma PAI-1 levels. However, an increased synthesis rate of mRNA transcripts in platelets from T2D and an increased release of PAI-1 could also result in similar mRNA and protein levels. Hence, synthesis and release rates of PAI-1 from platelets in T2D and obesity need to be investigated to further elucidate the role of platelets in obesity and T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidor 1 de Ativador de Plasminogênio , Plaquetas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Obesidade , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Inibidor 2 de Ativador de Plasminogênio/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo
7.
FASEB J ; 36(9): e22512, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36001064

RESUMO

The kinase IKKß controls pro-inflammatory gene expression, and its activity in the liver and leukocytes was shown to drive metabolic inflammation and insulin resistance in obesity. However, it was also proposed that liver IKKß signaling protects obese mice from insulin resistance and endoplasmic reticulum (ER) stress by increasing XBP1s protein stability. Furthermore, mice lacking IKKß in leukocytes display increased lethality to lipopolysaccharides. This study aims at improving our understanding of the role of IKKß signaling in obesity. We induced IKKß deletion in hematopoietic cells and liver of obese mice by Cre-LoxP recombination, using an INF-inducible system, or a liver-specific IKKß deletion in obese mice by adenovirus delivery of the Cre recombinase. The histopathological, immune, and metabolic phenotype of the mice was characterized. IKKß deletion in the liver and hematopoietic cells was not tolerated in mice with established obesity exposed to the TLR3 agonist poly(I:C) and exacerbated liver damage and ER-stress despite elevated XBP1s. By contrast, liver-specific ablation of IKKß in obese mice reduced steatosis and improved insulin sensitivity in association with increased XBP1s protein abundance and reduced expression of de-novo lipogenesis genes. We conclude that IKKß blockage in liver and leukocytes is not tolerated in obese mice exposed to TLR3 agonists. However, selective hepatic IKKß ablation improves fatty liver and insulin sensitivity in association with increased XBP1s protein abundance and reduced expression of lipogenic genes.


Assuntos
Fígado Gorduroso , Resistência à Insulina , Animais , Fígado Gorduroso/metabolismo , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Leucócitos/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , Receptor 3 Toll-Like/metabolismo
8.
Diabetologia ; 65(1): 128-139, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34743218

RESUMO

AIMS/HYPOTHESIS: Galectin-1 modulates inflammation and angiogenesis, and cross-sectional studies indicate that galectin-1 may be a uniting factor between obesity, type 2 diabetes and kidney function. We examined whether circulating galectin-1 can predict incidence of chronic kidney disease (CKD) and type 2 diabetes in a middle-aged population, and if Mendelian randomisation (MR) can provide evidence for causal direction of effects. METHODS: Participants (n = 4022; 58.6% women) in the Malmö Diet and Cancer Study-Cardiovascular Cohort enrolled between 1991 and 1994 (mean age 57.6 years) were examined. eGFR was calculated at baseline and after a mean follow-up of 16.6 ± 1.5 years. Diabetes status was ascertained through registry linkage (mean follow-up of 18.4 ± 6.1 years). The associations of baseline galectin-1 with incident CKD and type 2 diabetes were assessed with Cox regression, adjusting for established risk factors. In addition, a genome-wide association study on galectin-1 was performed to identify genetic instruments for two-sample MR analyses utilising the genetic associations obtained from the Chronic Kidney Disease Genetics (CKDGen) Consortium (41,395 cases and 439,303 controls) and the DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) consortium (74,124 cases and 824,006 controls). One genome-wide significant locus in the galectin-1 gene region was identified (sentinel SNP rs7285699; p = 2.4 × 10-11). The association between galectin-1 and eGFR was also examined in individuals with newly diagnosed diabetes from the All New Diabetics In Scania (ANDIS) cohort. RESULTS: Galectin-1 was strongly associated with lower eGFR at baseline (p = 2.3 × 10-89) but not with incident CKD. However, galectin-1 was associated with increased risk of type 2 diabetes (per SD increase, HR 1.12; 95% CI 1.02, 1.24). Two-sample MR analyses could not ascertain a causal effect of galectin-1 on CKD (OR 0.92; 95% CI 0.82, 1.02) or type 2 diabetes (OR 1.05; 95% CI 0.98, 1.14) in a general population. However, in individuals with type 2 diabetes from ANDIS who belonged to the severe insulin-resistant diabetes subgroup and were at high risk of diabetic nephropathy, genetically elevated galectin-1 was significantly associated with higher eGFR (p = 5.7 × 10-3). CONCLUSIONS/INTERPRETATION: Galectin-1 is strongly associated with lower kidney function in cross-sectional analyses, and two-sample MR analyses suggest a causal protective effect on kidney function among individuals with type 2 diabetes at high risk of diabetic nephropathy. Future studies are needed to explore the mechanisms by which galectin-1 affects kidney function and whether it could be a useful target among individuals with type 2 diabetes for renal improvement.


Assuntos
Diabetes Mellitus Tipo 2 , Insuficiência Renal Crônica , Estudos Transversais , Diabetes Mellitus Tipo 2/genética , Feminino , Galectina 1/genética , Estudo de Associação Genômica Ampla , Taxa de Filtração Glomerular , Humanos , Masculino , Pessoa de Meia-Idade , Insuficiência Renal Crônica/genética , Fatores de Risco
9.
EBioMedicine ; 65: 103264, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33712379

RESUMO

BACKGROUND: It is commonly accepted that in obesity free fatty acids (FFA) cause insulin resistance and hyperglycemia, which drives hyperinsulinemia. However, hyperinsulinemia is observed in subjects with normoglycaemia and thus the paradigm above should be reevaluated. METHODS: We describe two studies: MD-Lipolysis, a case control study investigating the mechanisms of obesity-driven insulin resistance by a systemic metabolic analysis, measurements of adipose tissue lipolysis by microdialysis, and adipose tissue genomics; and POEM, a cohort study used for validating differences in circulating metabolites in relation to adiposity and insulin resistance observed in the MD-Lipolysis study. FINDINGS: In insulin-resistant obese with normal glycaemia from the MD-Lipolysis study, hyperinsulinemia was associated with elevated FFA. Lipolysis, assessed by glycerol release per adipose tissue mass or adipocyte surface, was similar between obese and lean individuals. Adipose tissue from obese subjects showed reduced expression of genes mediating catecholamine-driven lipolysis, lipid storage, and increased expression of genes driving hyperplastic growth. In the POEM study, FFA levels were specifically elevated in obese-overweight subjects with normal fasting glucose and high fasting levels of insulin and C-peptide. INTERPRETATION: In obese subjects with normal glycaemia elevated circulating levels of FFA at fasting are the major metabolic derangement candidate driving fasting hyperinsulinemia. Elevated FFA in obese with normal glycaemia were better explained by increased fat mass rather than by adipose tissue insulin resistance. These results support the idea that hyperinsulinemia and insulin resistance may develop as part of a homeostatic adaptive response to increased adiposity and FFA. FUNDING: Swedish-Research-Council (2016-02660); Diabetesfonden (DIA2017-250; DIA2018-384; DIA2020-564); Novo-Nordisk-Foundation (NNF17OC0027458; NNF19OC0057174); Cancerfonden (CAN2017/472; 200840PjF); Swedish-ALF-agreement (2018-74560).


Assuntos
Ácidos Graxos não Esterificados/metabolismo , Hiperinsulinismo/patologia , Obesidade/patologia , Tecido Adiposo/metabolismo , Estudos de Casos e Controles , Estudos de Coortes , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/patologia , Ácidos Graxos não Esterificados/sangue , Feminino , Regulação da Expressão Gênica , Glicerol/sangue , Glicerol/metabolismo , Humanos , Hiperinsulinismo/complicações , Insulina/sangue , Resistência à Insulina , Lipólise , Masculino , Pessoa de Meia-Idade , Obesidade/complicações , Análise de Componente Principal
10.
Ann Noninvasive Electrocardiol ; 25(6): e12781, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32638456

RESUMO

BACKGROUND: Wide QRS-T angles and inflammatory activity are markers of future cardiovascular events including sudden cardiac death (SCD). The association between wide QRS-T angles and inflammatory activation is however not fully understood. METHODS: 1,094 study participants of both sexes, 50-64 years old, were included from a randomly selected population-based cohort as a part of the Swedish CArdioPulmonary bioImage Study (SCAPIS) pilot study. Serum samples were analyzed for markers of inflammation, cardiac wall stress/injury, and the metabolic syndrome. Wide QRS-T angles were defined using Frank vectorcardiography. Variables were analyzed through unsupervised principal component analysis (PCA) as well as Orthogonal Projections to Latent Structures (OPLS) modeling. In addition, a subset of study participants was analyzed in a post hoc matched group design. RESULTS: Wide QRS-T angles correlated positively with markers of inflammation, cardiac wall stress/injury, the metabolic syndrome, and male sex in both PCA and OPLS models. In the matched post hoc analysis, participants with wide QRS-T angles had significantly higher counts of white blood cells (WBC) and neutrophils in comparison with matched controls. WBC as well as the number of neutrophils, monocytes, basophils, eosinophils and levels of C-reactive protein, IL-1, IL-4, IL-6, TNF-α, and NT-pro-BNP were also significantly higher in comparison with healthy controls. CONCLUSIONS: Markers of inflammatory activation and cardiac injury/wall stress were significantly higher in the presence of wide QRS-T angles. These results corroborate an association between abnormal electrophysiological function and inflammatory activation and may have implications for the prediction of SCD.


Assuntos
Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/fisiopatologia , Eletrocardiografia/métodos , Inflamação/diagnóstico , Inflamação/fisiopatologia , Morte Súbita Cardíaca/etiologia , Diabetes Mellitus , Feminino , Humanos , Hipertensão , Inflamação/complicações , Masculino , Pessoa de Meia-Idade , Medição de Risco , Fatores de Risco , Suécia
11.
Metabol Open ; 4: 100017, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32812946

RESUMO

OBJECTIVES: Galectin-1 is a recently discovered adipokine that increases with obesity and increased energy intake in adipose tissue. Our aim was to assess whether serum galectin-1 is associated with type 2 diabetes (T2D) and other parameters of the metabolic syndrome independently of body mass index (BMI) in a cohort from the general population. METHODS: In this cross-sectional population-based cohort study from the western part of Sweden, we investigated associations between serum galectin-1, clinical characteristics and inflammatory markers in 989 women and men aged 50-65 years [part of the Swedish CArdioPulmonary bioImage Study (SCAPIS) pilot cohort]. RESULTS: We showed in linear models that serum galectin-1 was independently and: (1) inversely associated with T2D (p < 0.05) and glucose (p < 0.05); and (2) positively associated with age (p < 0.01), sex (p < 0.01), BMI (p < 0.01), insulin (p < 0.01) and C-reactive protein (p < 0.01). Furthermore, galectin-1 demonstrated univariate correlations with triglycerides (r = 0.20, p < 0.01), homeostasis model assessment for insulin resistance (r = 0.24, p < 0.01), tumor necrosis factor-α (r = 0.24, p < 0.01), interleukin-6 (IL-6; r = 0.20, p < 0.01) and HbA1c (r = 0.14, p < 0.01). CONCLUSION: In a cross-sectional study of a middle-aged population, we showed that serum galectin-1 is: (1) inversely associated with T2D independently of BMI; and (2) independently associated with other markers of the metabolic syndrome These results warrant prospective and functional studies on the role of galectin-1 in T2D.

12.
Metabolism ; 65(7): 998-1006, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27282870

RESUMO

OBJECTIVE: To identify a potential therapeutic target for type 2 diabetes by comparing the subcutaneous interstitial fluid from type 2 diabetes patients and healthy men. METHODS: Proteomics was performed on the interstitial fluid of subcutaneous adipose tissue obtained by microdialysis from 7 type 2 diabetes patients and 8 healthy participants. 851 proteins were detected, of which 36 (including galectin-1) showed significantly altered expression in type 2 diabetes. We also measured galectin-1 expression in: (1) adipocytes isolated from adipose tissue biopsies from these participants; (2) subcutaneous adipose tissue of 24 obese participants before, during and after 16weeks on a very low calorie diet (VLCD); and (3) adipocytes isolated from 6 healthy young participants after 4weeks on a diet and lifestyle intervention to promote weight gain. We also determined the effect of galectin-1 on glucose uptake in human adipose tissue. RESULTS: Galectin-1 protein levels were elevated in subcutaneous dialysates from type 2 diabetes compared with healthy controls (p<0.05). In agreement, galectin-1 mRNA expression was increased in adipocytes from the type 2 diabetes patients (p<0.05). Furthermore, galectin-1 mRNA expression was decreased in adipose tissue after VLCD (p<0.05) and increased by overfeeding (p<0.05). Co-incubation of isolated human adipocytes with galectin-1 reduced glucose uptake (p<0.05) but this was independent of the insulin signal. CONCLUSION: Proteomics of the interstitial fluid in subcutaneous adipose tissue in vivo identified a novel adipokine, galectin-1, with a potential role in the pathophysiology of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Líquido Extracelular/química , Galectina 1/análise , Adulto , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...