Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Anaesth ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38071152

RESUMO

BACKGROUND: Sleep disruption is a common occurrence during medical care and is detrimental to patient recovery. Long-term sedation in the critical care setting is a modifiable factor that affects sleep, but the impact of different sedative-hypnotics on sleep homeostasis is not clear. METHODS: We conducted a systematic comparison of the effects of prolonged sedation (8 h) with i.v. and inhalational agents on sleep homeostasis. Adult Sprague-Dawley rats (n=10) received dexmedetomidine or midazolam on separate days. Another group (n=9) received propofol or sevoflurane on separate days. A third group (n=12) received coadministration of dexmedetomidine and sevoflurane. Wakefulness (wake), slow-wave sleep (SWS), and rapid eye movement (REM) sleep were quantified during the 48-h post-sedation period, during which we also assessed wake-associated neural dynamics using two electroencephalographic measures: theta-high gamma phase-amplitude coupling and high gamma weighted phase-lag index. RESULTS: Dexmedetomidine-, midazolam-, or propofol-induced sedation increased wake and decreased SWS and REM sleep (P<0.0001) during the 48-h post-sedation period. Sevoflurane produced no change in SWS, decreased wake for 3 h, and increased REM sleep for 6 h (P<0.02) post-sedation. Coadministration of dexmedetomidine and sevoflurane induced no change in wake (P>0.05), increased SWS for 3 h, and decreased REM sleep for 9 h (P<0.02) post-sedation. Dexmedetomidine, midazolam, and coadministration of dexmedetomidine with sevoflurane reduced wake-associated phase-amplitude coupling (P≤0.01). All sedatives except sevoflurane decreased wake-associated high gamma weighted phase-lag index (P<0.01). CONCLUSIONS: In contrast to i.v. drugs, prolonged sevoflurane sedation produced minimal changes in sleep homeostasis and neural dynamics. Further studies are warranted to assess inhalational agents for long-term sedation and sleep homeostasis.

2.
Anesth Analg ; 134(6): 1140-1152, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35436248

RESUMO

BACKGROUND: Cholinergic stimulation of prefrontal cortex (PFC) can reverse anesthesia. Conversely, inactivation of PFC can delay emergence from anesthesia. PFC receives cholinergic projections from basal forebrain, which contains wake-promoting neurons. However, the role of basal forebrain cholinergic neurons in arousal from the anesthetized state requires refinement, and it is currently unknown whether the arousal-promoting effect of basal forebrain is mediated through PFC. To address these gaps in knowledge, we implemented a novel approach to the use of chemogenetic stimulation and tested the role of basal forebrain cholinergic neurons in behavioral arousal during sevoflurane anesthesia. Next, we investigated the effect of tetrodotoxin-mediated inactivation of PFC on behavioral arousal produced by electrical stimulation of basal forebrain during sevoflurane anesthesia. METHODS: Adult male and female transgenic rats (Long-Evans-Tg [ChAT-Cre]5.1 Deis; n = 22) were surgically prepared for expression of excitatory hM3D(Gq) receptors or mCherry in basal forebrain cholinergic neurons, and activation of these neurons by local delivery of compound 21, an agonist for hM3D(Gq) receptors. The transgenic rats were fitted with microdialysis probes for agonist delivery into basal forebrain and simultaneous prefrontal acetylcholine measurement. Adult male and female Sprague Dawley rats were surgically prepared for bilateral electrical stimulation of basal forebrain and tetrodotoxin infusion (156 µM and 500 nL) into PFC (n = 9) or bilateral electrical stimulation of piriform cortex (n = 9) as an anatomical control. All rats were implanted with electrodes to monitor the electroencephalogram. Heart and respiration rates were monitored using noninvasive sensors. A 6-point scale was used to score behavioral arousal (0 = no arousal and 5 = return of righting reflex). RESULTS: Compound 21 delivery into basal forebrain of rats with hM3D(Gq) receptors during sevoflurane anesthesia produced increases in arousal score (P < .001; confidence interval [CI], 1.80-4.35), heart rate (P < .001; CI, 36.19-85.32), respiration rate (P < .001; CI, 22.81-58.78), theta/delta ratio (P = .008; CI, 0.028-0.16), and prefrontal acetylcholine (P < .001; CI, 1.73-7.46). Electrical stimulation of basal forebrain also produced increases in arousal score (P < .001; CI, 1.85-4.08), heart rate (P = .018; CI, 9.38-98.04), respiration rate (P < .001; CI, 24.15-53.82), and theta/delta ratio (P = .020; CI, 0.019-0.22), which were attenuated by tetrodotoxin-mediated inactivation of PFC. CONCLUSIONS: This study validates the role of basal forebrain cholinergic neurons in behavioral arousal and demonstrates that the arousal-promoting effects of basal forebrain are mediated in part through PFC.


Assuntos
Anestesia , Prosencéfalo Basal , Acetilcolina/metabolismo , Animais , Nível de Alerta , Prosencéfalo Basal/metabolismo , Colinérgicos/farmacologia , Eletroencefalografia , Feminino , Imidazóis , Masculino , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Sevoflurano/farmacologia , Sulfonamidas , Tetrodotoxina/metabolismo , Tiofenos
3.
J Neurosci ; 40(3): 605-618, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31776211

RESUMO

Leading neuroscientific theories posit a central role for the functional integration of cortical areas in conscious states. Considerable evidence supporting this hypothesis is based on network changes during anesthesia, but it is unclear whether these changes represent state-related (conscious vs unconscious) or drug-related (anesthetic vs no anesthetic) effects. We recently demonstrated that carbachol delivery to prefrontal cortex (PFC) restored wakefulness despite continuous administration of the general anesthetic sevoflurane. By contrast, carbachol delivery to parietal cortex, or noradrenaline delivery to either prefrontal or parietal cortices, failed to restore wakefulness. Thus, carbachol-induced reversal of sevoflurane anesthesia represents a unique state that combines wakefulness with clinically relevant anesthetic concentrations in the brain. To differentiate the state-related and drug-related associations of cortical connectivity and dynamics, we analyzed the electroencephalographic data gathered from adult male Sprague Dawley rats during the aforementioned experiments for changes in functional cortical gamma connectivity (25-155 Hz), slow oscillations (0.5-1 Hz), and complexity (<175 Hz). We show that higher gamma (85-155 Hz) connectivity is decreased (p ≤ 0.02) during sevoflurane anesthesia, an expected finding, but was not restored during wakefulness induced by carbachol delivery to PFC. Conversely, for rats in which wakefulness was not restored, the functional gamma connectivity remained reduced, but there was a significant decrease (p < 0.001) in the power of slow oscillations and increase (p < 0.001) in cortical complexity, which was similar to that observed during wakefulness induced after carbachol delivery to PFC. We conclude that the level of consciousness can be dissociated from cortical connectivity, oscillations, and dynamics.SIGNIFICANCE STATEMENT Numerous theories of consciousness suggest that functional connectivity across the cortex is characteristic of the conscious state and is reduced during anesthesia. However, it is unknown whether the observed changes are state-related (conscious vs unconscious) or drug-related (drug vs no drug). We used a novel rat model in which cholinergic stimulation of PFC produced wakefulness despite continuous exposure to a general anesthetic. We demonstrate that, as expected, general anesthesia reduces connectivity. Surprisingly, the connectivity remains suppressed despite pharmacologically induced wakefulness in the presence of anesthetic, with restoration occurring only after the anesthetic is discontinued. Thus, whether an animal exhibits wakefulness or not can be dissociated from cortical connectivity, prompting a reevaluation of the role of connectivity in level of consciousness.


Assuntos
Córtex Cerebral/fisiopatologia , Transtornos da Consciência/fisiopatologia , Eletroencefalografia/efeitos dos fármacos , Anestesia , Anestésicos Inalatórios/farmacologia , Animais , Carbacol/administração & dosagem , Carbacol/farmacologia , Córtex Cerebral/efeitos dos fármacos , Transtornos da Consciência/induzido quimicamente , Ritmo Gama/efeitos dos fármacos , Masculino , Agonistas Muscarínicos/farmacologia , Norepinefrina/farmacologia , Lobo Parietal/efeitos dos fármacos , Lobo Parietal/fisiopatologia , Córtex Pré-Frontal/fisiologia , Ratos , Ratos Sprague-Dawley , Sevoflurano/farmacologia , Vigília/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...