Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Urol ; 19(1): 69, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31340801

RESUMO

BACKGROUND: The expression level of ribonucleotide reductase subunit M1 (RRM1) is closely related to the effect of gemcitabine-based therapy in advanced bladder cancer. However, the value of RRM1 expression in predicting progression-free survival in non-muscle-invasive bladder cancer (NMIBC) patients treated with intravesical gemcitabine chemotherapy has not been elucidated. METHODS: This study randomly assigned 162 patients to either the RRM1-known group or the unknown group. We collected cancer tissues from 81 patients to evaluate the mRNA expression of RRM1 by using liquid chip technology. All patients were diagnosed and then treated with intravesical gemcitabine monotherapy immediately after transurethral resection of the bladder tumour (TURBT). RESULTS: RRM1 expression was high in 21% (17/81) of patients. The RRM1 mRNA level was not correlated with sex, age, weight, performance status, or CUA/EAU risk (p > 0.05). Progression-free survival (PFS) was significantly longer for patients with low RRM1 expression than for patients with high and unknown RRM1 expression (p = 0.009). Additionally, the 1- and 2-year relapse rates also differed according to RRM1 expression level. The 1-year relapse rates for RRM1-low, RRM1-high and RRM1-unknown patients were 0, 17.7 and 6.2% (p = 0.009), while the 2-year relapse rates for these groups were 3.1, 29.4, and 11.1% (p = 0.005), respectively. CONCLUSIONS: This preliminary study showed that low RRM1 expression was associated with longer progression-free survival and lower 1-year/2-year relapse rates in NMIBC patients treated with intravesical gemcitabine monotherapy, despite the need for further verification with large sample sizes and considering more mixed factors and biases.


Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Biomarcadores Tumorais/biossíntese , Desoxicitidina/análogos & derivados , Ribonucleosídeo Difosfato Redutase/biossíntese , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/metabolismo , Administração Intravesical , Adulto , Idoso , Idoso de 80 Anos ou mais , Desoxicitidina/administração & dosagem , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/diagnóstico , Valor Preditivo dos Testes , Distribuição Aleatória , Estudos Retrospectivos , Fatores de Risco , Resultado do Tratamento , Neoplasias da Bexiga Urinária/diagnóstico , Gencitabina
2.
FASEB J ; 33(8): 9638-9655, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31145867

RESUMO

Here, we performed whole-genome bisulfite sequencing of longissimus dorsi muscle from Landrace and Wuzhishan (WZS) miniature pigs during 18, 21, and 28 d postcoitum. It was uncovered that in regulatory regions only around transcription start sites (TSSs), gene expression and methylation showed negative correlation, whereas in gene bodies, positive correlation occurred. Furthermore, earlier myogenic gene demethylation around TSSs and earlier hypermethylation of myogenic genes in gene bodies were considered to trigger their earlier expression in miniature pigs. Furthermore, by analyzing the methylation pattern of the myogenic differentiation 1(MyoD) promoter and distal enhancer, we found that earlier demethylation of the MyoD distal enhancer in WZSs contributes to its earlier expression. Moreover, DNA demethylase Tet1 was found to be involved in the demethylation of the myogenin promoter and promoted immortalized mouse myoblast cell line (C2C12) and porcine embryonic myogenic cell differentiation. This study reveals that earlier demethylation of myogenic genes contributes to precocious terminal differentiation of myoblasts in miniature pigs.-Zhang, X., Nie, Y., Cai, S., Ding, S., Fu, B., Wei, H., Chen, L., Liu, X., Liu, M., Yuan, R., Qiu, B., He, Z., Cong, P., Chen, Y., Mo, D. Earlier demethylation of myogenic genes contributes to embryonic precocious terminal differentiation of myoblasts in miniature pigs.


Assuntos
Diferenciação Celular/fisiologia , Desenvolvimento Muscular/fisiologia , Mioblastos/citologia , Mioblastos/metabolismo , Animais , Diferenciação Celular/genética , Linhagem Celular , Biologia Computacional , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Desmetilação , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Desenvolvimento Muscular/genética , Proteína MyoD/genética , Proteína MyoD/metabolismo , Regiões Promotoras Genéticas/genética , Suínos , Porco Miniatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...