Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5108, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38876994

RESUMO

Low-cost thermoelectric materials with simultaneous high performance and superior plasticity at room temperature are urgently demanded due to the lack of ever-lasting power supply for flexible electronics. However, the inherent brittleness in conventional thermoelectric semiconductors and the inferior thermoelectric performance in plastic organics/inorganics severely limit such applications. Here, we report low-cost inorganic polycrystalline Mg3Sb0.5Bi1.498Te0.002, which demonstrates a remarkable combination of large strain (~ 43%) and high figure of merit zT (~ 0.72) at room temperature, surpassing both brittle Bi2(Te,Se)3 (strain ≤ 5%) and plastic Ag2(Te,Se,S) and organics (zT ≤ 0.4). By revealing the inherent high plasticity in Mg3Sb2 and Mg3Bi2, capable of sustaining over 30% compressive strain in polycrystalline form, and the remarkable deformability of single-crystalline Mg3Bi2 under bending, cutting, and twisting, we optimize the Bi contents in Mg3Sb2-xBix (x = 0 to 1) to simultaneously boost its room-temperature thermoelectric performance and plasticity. The exceptional plasticity of Mg3Sb2-xBix is further revealed to be brought by the presence of a dense dislocation network and the persistent Mg-Sb/Bi bonds during slipping. Leveraging its high plasticity and strength, polycrystalline Mg3Sb2-xBix can be easily processed into micro-scale dimensions. As a result, we successfully fabricate both in-plane and out-of-plane flexible Mg3Sb2-xBix thermoelectric modules, demonstrating promising power density. The inherent remarkable plasticity and high thermoelectric performance of Mg3Sb2-xBix hold the potential for significant advancements in flexible electronics and also inspire further exploration of plastic inorganic semiconductors.

2.
Adv Sci (Weinh) ; 11(23): e2309871, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38572674

RESUMO

The rapid development of the Internet of Things has triggered a huge demand for self-sustained technology that can provide a continuous electricity supply for low-power electronics. Here, a self-sustained power supply solution is demonstrated that can produce a 24 h continuous and unipolar electricity output based on thermoelectric devices by harvesting the environmental temperature difference, which is ingeniously established utilizing radiation cooling and selective photothermal conversion. The developed prototype system can stably maintain a large temperature difference of about 1.8 K for a full day despite the real-time changes in environmental temperature and solar radiation, thereby driving continuous electricity output using the built-in thermoelectric device. Specifically, the large output voltage of >102 mV and the power density of >4.4 mW m-2 could be achieved for a full day, which are outstanding among the 24 h self-sustained thermoelectric devices and far higher than the start-up values of the wireless temperature sensor and also the light-emitting diode, enabling the 24 h remote data transmission and lighting, respectively. This work highlights the application prospects of self-sustained thermoelectric devices for low-power electronics.

3.
Int J Mol Sci ; 24(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37958835

RESUMO

Vacuolar sugar transporters transport sugar across the tonoplast, are major players in maintaining sugar homeostasis, and therefore play vital roles in plant growth, development, and biomass yield. In this study, we analyzed the physiological roles of the tonoplast monosaccharide transporter 2 (TMT2) in Arabidopsis. In contrast to the wild type (WT) that produced uniform seedlings, the tmt2 mutant produced three types of offspring: un-germinated seeds (UnG), seedlings that cannot form true leaves (tmt2-S), and seedlings that develop normally (tmt2-L). Sucrose, glucose, and fructose can substantially, but not completely, rescue the abnormal phenotypes of the tmt2 mutant. Abnormal cotyledon development, arrested true leaf development, and abnormal development of shoot apical meristem (SAM) were observed in tmt2-S seedlings. Cotyledons from the WT and tmt2-L seedlings restored the growth of tmt2-S seedlings through micrografting. Moreover, exogenous sugar sustained normal growth of tmt2-S seedlings with cotyledon removed. Finally, we found that the TMT2 deficiency resulted in growth defects, most likely via changing auxin signaling, target of rapamycin (TOR) pathways, and cellular nutrients. This study unveiled the essential functions of TMT2 for seed germination and initial seedling development, ensuring cotyledon function and mobilizing sugars from cotyledons to seedlings. It also expanded the current knowledge on sugar metabolism and signaling. These findings have fundamental implications for enhancing plant biomass production or seed yield in future agriculture.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carboidratos , Germinação , Glucose/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Plântula/metabolismo
4.
Adv Sci (Weinh) ; 10(23): e2302086, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37271926

RESUMO

Half-Heusler compounds with semiconducting behavior have been developed as high-performance thermoelectric materials for power generation. Many half-Heusler compounds also exhibit metallic behavior without a bandgap and thus inferior thermoelectric performance. Here, taking metallic half-Heusler MgNiSb as an example, a bandgap opening strategy is proposed by introducing the d-d orbital interactions, which enables the opening of the bandgap and the improvement of the thermoelectric performance. The width of the bandgap can be engineered by tuning the strength of the d-d orbital interactions. The conduction type and the carrier density can also be modulated in the Mg1- x Tix NiSb system. Both improved n-type and p-type thermoelectric properties are realized, which are much higher than that of the metallic MgNiSb. The proposed bandgap opening strategy can be employed to design and develop new half-Heusler semiconductors for functional and energy applications.

5.
Small ; 19(39): e2302457, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37263990

RESUMO

The recently developed defective 19-electron half-Heusler (HH) compounds, represented by Nb1- δ CoSb, possess massive intrinsic vacancies at the cation site and thus intrinsically low lattice thermal conductivity that is desirable for thermoelectric (TE) applications. Yet the TE performance of defective HHs with a maximum figure of merit (zT) <1.0 is still inferior to that of the conventional 18-electron ones. Here, a peak zT exceeding unity is obtained at 1123 K for both Nb0.7 Ta0.13 CoSb and Nb0.6 Ta0.23 CoSb, a benchmark value for defective 19-electron HHs. The improved zT results from the achievement of selective scatterings of phonons and electrons in defective Nb0.83 CoSb, using lanthanide contraction as a design factor to select alloying elements that can strongly impede the phonon propagation but weakly disturb the periodic potential. Despite the massive vacancies induced strong point defect scattering of phonons in Nb0.83 CoSb, Ta alloying is still found effective in suppressing lattice thermal conductivity while maintaining the carrier mobility almost unchanged. In comparison, V alloying significantly deteriorates the carrier transport and thus the TE performance. These results enlarge the category of high-performance HH TE materials beyond the conventional 18-electron ones and highlight the effectiveness of selective scatterings of phonons and electrons in developing TE materials even with massive vacancies.

6.
Adv Sci (Weinh) ; 10(12): e2206397, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36799534

RESUMO

Wearable thermoelectric generators (TEGs), which can convert human body heat to electricity, provide a promising solution for self-powered wearable electronics. However, their power densities still need to be improved aiming at broad practical applications. Here, a stretchable TEG that achieves comfortable wearability and outstanding output performance simultaneously is reported. When worn on the forehead at an ambient temperature of 15 °C, the stretchable TEG exhibits excellent power densities with a maximum value of 13.8 µW cm-2 under the breezeless condition, and even as high as 71.8 µW cm-2 at an air speed of 2 m s-1 , being one of the highest values for wearable TEGs. Furthermore, this study demonstrates that this stretchable TEG can effectively power a commercial light-emitting diode and stably drive an electrocardiogram module in real-time without the assistance of any additional power supply. These results highlight the great potential of these stretchable TEGs for power generation applications.

7.
Innovation (Camb) ; 3(6): 100341, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36353674

RESUMO

Inorganic semiconductor Ag2Te1-x S x has been recently found to exhibit unexpected plastic deformation with compressive strain up to 30%. However, the origin of the abnormal plasticity and how to simultaneously achieve superb ductility and high mobility are still elusive. Here, we demonstrate that crystalline/amorphous Ag2Te1-x S x (x = 0.3, 0.4, and 0.5) composites can exhibit excellent compressive strain up to 70% if the monoclinic Ag2Te phase, which commonly exists in the matrix, is eliminated. Significantly, an ultra-high tensile elongation reaching 107.3% was found in Ag2Te0.7S0.3, which is the highest one yet reported in the system and even surpasses those achieved in some metals and high-entropy alloys. Moreover, high mobility of above 1000 cm2 V-1 s-1 at room temperature and good thermoelectric performance are simultaneously maintained. A modified Ashby plot with ductility factor versus carrier mobility is thereby proposed to highlight the potential of solid materials for applications in flexible/wearable electronics.

8.
Nanoscale ; 14(28): 10067-10074, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35791918

RESUMO

Band structure engineering has a strong beneficial impact on thermoelectric performance, where theoretical methods dominate the investigation of electronic structures. Here, we use angle-resolved photoemission spectroscopy (ARPES) to analyze the electronic structure and report on the thermoelectric transport properties of half-Heusler TiCoSb high-quality single crystals. High degeneracy of the valence bands at the L and Γ band maximum points was observed, which provides a band-convergence scenario for the thermoelectric performance of TiCoSb. Previous efforts have shown how crystallographic defects play an important role in TiCoSb transport properties, while the intrinsic properties remain elusive. Using hard X-ray photoelectron spectroscopy (HAXPES), we discard the presence of interstitial defects that could induce in-gap states near the valence band in our crystals. Contrary to polycrystalline reports, intrinsic TiCoSb exhibits p-type transport, albeit defects still affect the carrier concentration. In two initially identical p-type TiCoSb crystal batches, distinct metallic and semiconductive behaviors were found owing to defects not noticeable by elemental analysis. A varying Seebeck effective mass is consistent with the change at the Fermi level within this band convergence picture. This report tackles the direct investigation of the electronic structure of TiCoSb and reveals new insights and the strong impact of point defects on the optimization of thermoelectric properties.

9.
ACS Appl Mater Interfaces ; 14(18): 21224-21231, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35482595

RESUMO

Wearable thermoelectrics has attracted significant interest in recent years. Among them, rigid-structure thermoelectric generators (TEGs) were seldomly employed for wearable applications, although those exhibit significant advantages of high device output performance and impact resistance. Here, we report a type of rigid wearable TEGs (w-TEGs) without ceramic substrates made using a simple cutting-and-bonding method. Owing to the small contact area, the w-TEGs comprising 48-n/p-pairs can be well attached to the human body. The lack of ceramic substrates leaves more space in the height direction, which benefits the wearability in practical applications and high power density. We demonstrated that increasing the height of w-TEGs from 1.38 to 3.14 mm significantly improves the power density by a factor of 10. As a result, the maximum power densities of 7.9 µW cm-2 and 43.6 µW cm-2 for the w-TEGs were realized under the breezeless condition and a wind speed for normal walking, respectively. This work provides a feasible design solution for rigid-structure free-substrate w-TEGs with very high power density, which will speed up the research of wearable thermoelectrics.


Assuntos
Temperatura Alta , Dispositivos Eletrônicos Vestíveis , Fontes de Energia Elétrica , Corpo Humano , Humanos , Caminhada
10.
Innovation (Camb) ; 2(4): 100179, 2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34877560

RESUMO

Artificial intelligence (AI) coupled with promising machine learning (ML) techniques well known from computer science is broadly affecting many aspects of various fields including science and technology, industry, and even our day-to-day life. The ML techniques have been developed to analyze high-throughput data with a view to obtaining useful insights, categorizing, predicting, and making evidence-based decisions in novel ways, which will promote the growth of novel applications and fuel the sustainable booming of AI. This paper undertakes a comprehensive survey on the development and application of AI in different aspects of fundamental sciences, including information science, mathematics, medical science, materials science, geoscience, life science, physics, and chemistry. The challenges that each discipline of science meets, and the potentials of AI techniques to handle these challenges, are discussed in detail. Moreover, we shed light on new research trends entailing the integration of AI into each scientific discipline. The aim of this paper is to provide a broad research guideline on fundamental sciences with potential infusion of AI, to help motivate researchers to deeply understand the state-of-the-art applications of AI-based fundamental sciences, and thereby to help promote the continuous development of these fundamental sciences.

11.
Nat Commun ; 12(1): 5408, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535648

RESUMO

Valley anisotropy is a favorable electronic structure feature that could be utilized for good thermoelectric performance. Here, taking advantage of the single anisotropic Fermi pocket in p-type Mg3Sb2, a feasible strategy utilizing the valley anisotropy to enhance the thermoelectric power factor is demonstrated by synergistic studies on both single crystals and textured polycrystalline samples. Compared to the heavy-band direction, a higher carrier mobility by a factor of 3 is observed along the light-band direction, while the Seebeck coefficient remains similar. Together with lower lattice thermal conductivity, an increased room-temperature zT by a factor of 3.6 is found. Moreover, the first-principles calculations of 66 isostructural Zintl phase compounds are conducted and 9 of them are screened out displaying a pz-orbital-dominated valence band, similar to Mg3Sb2. In this work, we experimentally demonstrate that valley anisotropy is an effective strategy for the enhancement of thermoelectric performance in materials with anisotropic Fermi pockets.

12.
Adv Sci (Weinh) ; 8(17): e2100782, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34240573

RESUMO

The interplay between topology and magnetism has recently sparked the frontier studies of magnetic topological materials that exhibit intriguing anomalous Hall and Nernst effects owning to the large intrinsic Berry curvature (BC). To better understand the anomalous quantum transport properties of these materials and their implications for future applications such as electronic and thermoelectric devices, it is crucial to discover more novel material platforms for performing anomalous transverse transport studies. Here, it is experimentally demonstrated that low-cost Fe-based Heusler compounds exhibit large anomalous Hall and Nernst effects. An anomalous Hall conductivity of 250-750 S cm-1 and Nernst thermopower of above 2 µV K-1 are observed near room temperature. The positive effect of anti-site disorder on the anomalous Hall transport is revealed. Considering the very high Curie temperature (nearly 1000 K), larger Nernst thermopowers at high temperatures are expected owing to the existing magnetic order and the intrinsic BC. This work provides a background for developing low-cost Fe-based Heusler compounds as a new material platform for anomalous transport studies and applications, in particular, near and above room temperature.

13.
ACS Appl Mater Interfaces ; 13(6): 7317-7323, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33530689

RESUMO

In recent years, high-performance half-Heusler compounds have been developed as promising thermoelectric materials for power generation. Aiming at practical device applications, one key step is to seek suitable metal electrodes so that low interfacial resistivity is guaranteed under long-term thermal aging. In the previous work, the fresh Mo/Nb0.8Ti0.2FeSb junction was found exhibiting low contact resistivity below 1 µΩ cm2; however, it increased by tens of times under long-term thermal aging, mainly originating from the formation of the high-resistivity FeSb2 phase and the appearance of cracks. Here, the Mo-Fe electrodes are employed to build the junctions with Nb0.8Ti0.2FeSb. The interfacial behavior and contact resistance in these junctions were investigated both before and after the thermal aging. Interestingly, no obvious formation of FeSb2 phase and cracks were observed. As a result, the contact resistivity was below ∼1 µΩ cm2 after 15 days' thermal aging, indicating better connection reliability and lower contact resistivity compared to the Mo/Nb0.8Ti0.2FeSb junction. These findings highlight the applicability of Mo-Fe electrodes and pave the way for NbFeSb-based half-Heusler thermoelectric materials for device applications.

14.
Adv Mater ; 33(7): e2003168, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33296128

RESUMO

The emerging class of topological materials provides a platform to engineer exotic electronic structures for a variety of applications. As complex band structures and Fermi surfaces can directly benefit thermoelectric performance it is important to identify the role of featured topological bands in thermoelectrics particularly when there are coexisting classic regular bands. In this work, the contribution of Dirac bands to thermoelectric performance and their ability to concurrently achieve large thermopower and low resistivity in novel semimetals is investigated. By examining the YbMnSb2 nodal line semimetal as an example, the Dirac bands appear to provide a low resistivity along the direction in which they are highly dispersive. Moreover, because of the regular-band-provided density of states, a large Seebeck coefficient over 160 µV K-1 at 300 K is achieved in both directions, which is very high for a semimetal with high carrier concentration. The combined highly dispersive Dirac and regular bands lead to ten times increase in power factor, reaching a value of 2.1 mW m-1 K-2 at 300 K. The present work highlights the potential of such novel semimetals for unusual electronic transport properties and guides strategies towards high thermoelectric performance.

15.
Angew Chem Int Ed Engl ; 60(11): 5800-5805, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33300643

RESUMO

Heusler compounds have potential in electrocatalysis because of their mechanical robustness, metallic conductivity, and wide tunability in the electronic structure and element compositions. This study reports the first application of Co2 YZ-type Heusler compounds as electrocatalysts for the oxygen evolution reaction (OER). A range of Co2 YZ crystals was synthesized through the arc-melting method and the eg orbital filling of Co was precisely regulated by varying Y and Z sites of the compound. A correlation between the eg orbital filling of reactive Co sites and OER activity was found for Co2 MnZ compounds (Z=Ti, Al, V, and Ga), whereby higher catalytic current was achieved for eg orbital filling approaching unity. A similar trend of eg orbital filling on the reactivity of cobalt sites was also observed for other Heusler compounds (Co2 VZ, Z=Sn and Ga). This work demonstrates proof of concept in the application of Heusler compounds as a new class of OER electrocatalysts, and the influence of the manipulation of the spin orbitals on their catalytic performance.

16.
Adv Mater ; 32(45): e2004331, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33029834

RESUMO

The development of high-density magnetic recording media is limited by superparamagnetism in very small ferromagnetic crystals. Hard magnetic materials with strong perpendicular anisotropy offer stability and high recording density. To overcome the difficulty of writing media with a large coercivity, heat-assisted magnetic recording was developed, rapidly heating the media to the Curie temperature Tc before writing, followed by rapid cooling. Requirements are a suitable Tc , coupled with anisotropic thermal conductivity and hard magnetic properties. Here, Rh2 CoSb is introduced as a new hard magnet with potential for thin-film magnetic recording. A magnetocrystalline anisotropy of 3.6 MJ m-3 is combined with a saturation magnetization of µ0 Ms  = 0.52 T at 2 K (2.2 MJ m-3 and 0.44 T at room temperature). The magnetic hardness parameter of 3.7 at room temperature is the highest observed for any rare-earth-free hard magnet. The anisotropy is related to an unquenched orbital moment of 0.42 µB on Co, which is hybridized with neighboring Rh atoms with a large spin-orbit interaction. Moreover, the pronounced temperature dependence of the anisotropy that follows from its Tc of 450 K, together with a thermal conductivity of 20 W m-1 K-1 , make Rh2 CoSb a candidate for the development of heat-assisted writing with a recording density in excess of 10 Tb in.-2 .

17.
Nat Commun ; 11(1): 3142, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561856

RESUMO

Chemical doping is one of the most important strategies for tuning electrical properties of semiconductors, particularly thermoelectric materials. Generally, the main role of chemical doping lies in optimizing the carrier concentration, but there can potentially be other important effects. Here, we show that chemical doping plays multiple roles for both electron and phonon transport properties in half-Heusler thermoelectric materials. With ZrNiSn-based half-Heusler materials as an example, we use high-quality single and polycrystalline crystals, various probes, including electrical transport measurements, inelastic neutron scattering measurement, and first-principles calculations, to investigate the underlying electron-phonon interaction. We find that chemical doping brings strong screening effects to ionized impurities, grain boundary, and polar optical phonon scattering, but has negligible influence on lattice thermal conductivity. Furthermore, it is possible to establish a carrier scattering phase diagram, which can be used to select reasonable strategies for optimization of the thermoelectric performance.

18.
Research (Wash D C) ; 2020: 4643507, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32318686

RESUMO

Highly conductive topological semimetals with exotic electronic structures offer fertile ground for the investigation of the electrical and thermal transport behavior of quasiparticles. Here, we find that the layer-structured Dirac semimetal PtSn4 exhibits a largely suppressed thermal conductivity under a magnetic field. At low temperatures, a dramatic decrease in the thermal conductivity of PtSn4 by more than two orders of magnitude is obtained at 9 T. Moreover, PtSn4 shows both strong longitudinal and transverse thermoelectric responses under a magnetic field. Large power factor and Nernst power factor of approximately 80-100 µW·cm-1·K-2 are obtained around 15 K in various magnetic fields. As a result, the thermoelectric figure of merit zT is strongly enhanced by more than 30 times, compared to that without a magnetic field. This work provides a paradigm for the decoupling of the electron and hole transport behavior of highly conductive topological semimetals and is helpful for developing topological semimetals for thermoelectric energy conversion.

19.
Adv Mater ; 32(16): e1908218, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32115799

RESUMO

Mg3 (Sb,Bi)2 alloys have recently been discovered as a competitive alternative to the state-of-the-art n-type Bi2 (Te,Se)3 thermoelectric alloys. Previous theoretical studies predict that single crystals Mg3 (Sb,Bi)2 can exhibit higher thermoelectric performance near room temperature by eliminating grain boundary resistance. However, the intrinsic Mg defect chemistry makes it challenging to grow n-type Mg3 (Sb,Bi)2 single crystals. Here, the first thermoelectric properties of n-type Te-doped Mg3 Sb2 single crystals, synthesized by a combination of Sb-flux method and Mg-vapor annealing, is reported. The electrical conductivity and carrier mobility of single crystals exhibit a metallic behavior with a typical T-1.5 dependence, indicating that phonon scattering dominates the charge carrier transport. The absence of any evidence of ionized impurity scattering in Te-doped Mg3 Sb2 single crystals proves that the thermally activated mobility previously observed in polycrystalline materials is caused by grain boundary resistance. Eliminating this grain boundary resistance in the single crystals results in a large enhancement of the weighted mobility and figure of merit zT by more than 100% near room temperature. This work experimentally demonstrates the accurate understanding of charge-carrier scattering is crucial for developing high-performance thermoelectric materials and indicates that single-crystalline Mg3 (Sb,Bi)2 solid solutions can exhibit higher zT compared to polycrystalline samples.

20.
Adv Sci (Weinh) ; 7(1): 1902409, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31921571

RESUMO

Accurate determination of the intrinsic electronic structure of thermoelectric materials is a prerequisite for utilizing an electronic band engineering strategy to improve their thermoelectric performance. Herein, with high-resolution angle-resolved photoemission spectroscopy (ARPES), the intrinsic electronic structure of the 3D half-Heusler thermoelectric material ZrNiSn is revealed. An unexpectedly large intrinsic bandgap is directly observed by ARPES and is further confirmed by electrical and optical measurements and first-principles calculations. Moreover, a large anisotropic conduction band with an anisotropic factor of 6 is identified by ARPES and attributed to be one of the most important reasons leading to the high thermoelectric performance of ZrNiSn. These successful findings rely on the grown high-quality single crystals, which have fewer Ni interstitial defects and negligible in-gap states on the electronic structure. This work demonstrates a realistic paradigm to investigate the electronic structure of 3D solid materials by using ARPES and provides new insights into the intrinsic electronic structure of the half-Heusler system benefiting further optimization of thermoelectric performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...