Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38597296

RESUMO

Flexible pressure sensors (FPSs) based on biomass materials have gained considerable attention for their potential in wearable electronics, human-machine interaction, and environmental protection. Herein, flexible silver nanowire-dual-cellulose paper (SNdCP) containing common cellulose fibers, cellulose nanofibers (CNFs), and silver nanowires (AgNWs) for FPSs was assembled by a facile papermaking strategy. Compared with bacterial cellulose (BC) and cellulose nanocrystals (CNCs), CNFs possess better dimensions and reinforcement, which enables the composite paper to exhibit better mechanical properties (tensile stress of 164.65 MPa) and electrical conductivity (11600 S·m-1), providing more possibilities for FPSs. Benefiting from these advantages, we construct an easily processable and sensitive human-interactive FPS based on a composite paper with high sensitivity (0.050 kPa-1), fast response/recovery time (158/95 ms), and exceptional stability (>1000 bending cycles), capable of responding to finger motions, voice recognition, and human pulses; through further employment as the array unit and a control circuit, the observed highly adaptive mechano-electric transformability and functions are well maintained. Overall, a facile and versatile strategy with the potential to provide clues for the fabrication of cellulose-based FPSs with outstanding performance was introduced.

2.
Carbohydr Polym ; 334: 122060, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553244

RESUMO

Flexible conductive hydrogels (FCHs) have attracted widespread interest as versatile monoliths that can be intricately integrated with various ingredients boasting multiple functionalities. The chemicophysical properties of FCHs cover a wide range, which significantly vary in their building blocks. However, achieving both favorable mechanical strength and high conductivity simultaneously through a facile approach remains a challenge. Herein, polyvinyl alcohol, dialdehyde cellulose nanofibrils, silver nanoparticles, borax, and tannic acid are readily "one-pot" incorporated into FCHs with great tensile stress (499 kPa), tensile strain (4591 %), and compressive stress (269 kPa) due to abundant hydrogen bonding, dynamic borate-diol bonding, and intermolecular acetalization. They also exhibit desired self-healing, generalized-adhesive, and antibacterial performances. Taking advantage of these, FCHs are further employed to support an epidermal sensor, on which remarkable strain sensitivity (gauge factor = 8.22), high-pressure sensitivity (≥ 0.258 kPa-1), and fast response (≤ 190 ms) are recorded. Its highly adaptive mechano-electric transformability and functions can be well maintained in serving as an array unit and touch screen pen. The results well addressed in this work are anticipated to pave the universal way of engineering FCHs.

3.
Carbohydr Polym ; 330: 121833, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38368110

RESUMO

The colored and high-saline effluents during the traditional dyeing process poses serious environmental challenge. In our study, an eco-friendly cationic cellulose nano-fiber/chitosan (CCNF/CS) binary versatile auxiliary was designed for the neutral salt-free dyeing and physical enhancement of paper by mixing with pulp simply. Profiting from the rich cationic binding sites of CCNF/CS (Charge density: 3749.67 µmol/g), under near neutral conditions (pH = 6.2), the maximum adsorption capacity of anionic GL (Direct fast turquoise blue GL) on paper with 0.5 % CCNF/CS reached 1865.06 mg/g with a desirable evenness (45.5 % and 92.1 % higher than that of CCNF and NaCl group, respectively), and the dye uptake was up to 97 %. The spontaneous adsorption behavior was aligned with the pseudo-second-order and Langmuir models, with a primary physical mechanism enhanced by chemical forces. The combination of strong electronic attraction, hydrogen bonding, and n-π stacking effects granted CCNF/CS an enhanced proficiency in anionic dye adsorption. In addition, the tensile strength of the resulting paper yarn with 0.5 % CCNF/CS increased to 52.47 MPa under the optimal parameters, deriving from the CCNF/CS-induced inter-fiber cohesion. Overall, our research provided a green promising approach for the innovative neutral salt-free dyeing and mechanical enhancement of paper.

4.
Int J Biol Macromol ; 253(Pt 2): 126723, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37696377

RESUMO

With the increased demand for green and sustainable development, the research of advanced biomass-based carbon dots (CDs) has drawn growing attention. Herein, a one-step green solvent integration strategy-assisted solvothermal method to preparing CDs from hydrolyzed lignin and ethylenediamine (EDA) in formamide (FA) was developed. The Schiff reaction between FA and EDA contributes to the formation of -C-N groups, further inducing the high photoluminescence quantum yield (up to 42.69 %),obviously higher than NCDs prepared in H2O, EtOH and DMF systems (corresponding to H-NCDs, E-NCDs and D-NCDs, respectively). The analysis of structure, composition, photoluminescence (PL) behaviors and DFT calculations showed that F-NCDs have main blue fluorescent emission peak from 410 to 455 nm under 330-390 nm excitation due to the small sp2 structure in carbon core, and the large sp2 conjugated clusters and CO group related surface states leaded to the long wavelength emission. The F-NCDs with excellent optical properties was further used for preparing fluorescent film and invisible anti-counterfeiting ink, which exhibited outstanding fluorescence even at different temperatures and aging times. We provided a facile way for green facile preparation of lignin-based CDs and their sustainable anti-counterfeiting application.


Assuntos
Lignina , Pontos Quânticos , Carbono/química , Nitrogênio/química , Pontos Quânticos/química , Fluorescência , Corantes
5.
Carbohydr Polym ; 304: 120489, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36641193

RESUMO

Bacterial cellulose (BC) lithium-ion batteries separators possess outstanding thermal dimensional stability and electrolyte wettability, but theirs nano diameter and high aspect ratio lead to poor porosity and pore size uniformity of dense BC separators, limiting the Li+ transmission in the separators. In this paper, chitosan (CS) with different molecular weight was grafted onto BC (named OBCS), and a high-performance OBCS separator with excellent pore structure and tunable pore size was prepared by simple suction filtration. The spacing and dispersion uniformity of OBCS were improved by the CS grafted on BC surface, thus improving the pore structure and porosity of OBCS separators. The results showed that the obtained OBCS separators not only have excellent physicochemical properties, but also exhibit higher electrochemical performances than the commercial polypropylene (PP) separator. This work provides a new feasible strategy for improving the pore structure and porosity of nanocellulose separators.


Assuntos
Quitosana , Lítio , Íons , Celulose , Fontes de Energia Elétrica
6.
Carbohydr Polym ; 283: 119135, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35153011

RESUMO

To date, flexible pressure sensors built on silver nanowires (AgNWs) have attracted tremendous attention, owing to their versatile applications in wearable, human-interactive, health-monitoring devices. Cellulose and its derivatives, which show great promise in serving flexible pressure sensors as the desired substrate due to their natural abundance, biocompatibility, easy processibility, and low costs. Herein, we reported a rational strategy to design a silver nanowires-dual-cellulose conductive paper. Its morphology, chemical and crystal structures, thermal stability, mechanical performances, and electrical properties were carefully studied. The results suggested that good tensile properties (tensile strength ≤8.10 MPa), high electrical conductivity (≤ 1.74 × 104 S·m-1) with long-term stability, and good adhesion stability (bending cycles over 500) were obtained. Furthermore, the use of such conductive paper as substrate for versatile flexible pressure sensors was demonstrated, which exhibited fast response (~ 0.48 s) and high sensitivity, in response to finger motion, voice recognition, and human pulse, etc.


Assuntos
Celulose/química , Nanofios/química , Papel , Prata/química , Dispositivos Eletrônicos Vestíveis , Condutividade Elétrica , Humanos , Movimento (Física) , Pulso Arterial , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Resistência à Tração , Difração de Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...