Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 329: 121783, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38286553

RESUMO

The skin, the primary barrier of the body, is inevitably broken. However, the development of materials that facilitate wound healing with sustained antimicrobial, hemostatic, and biocompatible properties remains a formidable challenge. In this article, we prepared a photopolymerizable composite hydrogel consisting of a hydrogel matrix, a hemostatic/antibacterial agent, and a photothermal therapy agent. The photopolymerizable hydrogel matrix was prepared by grafting the photoinitiator and polymerizable active monomer onto the chitosan chain segment, which exhibits excellent biocompatibility. Furthermore, linalool is adsorbed on the surface of halloysite nanotubes (HNTs) to form a hemostatic and antibacterial. Meanwhile, dopamine is employed as a coating material for hollow glass microsphere (HGM), which enables them to function as photothermal therapy agents. Upon exposure to near-infrared radiation, the PHA hydrogel releases linalool molecules from the surface of the HNTs, which diffuse into the hydrogel matrix, resulting in a sustained antimicrobial effect. At the same time, rapid curing of the photopolymerizable hydrogel under UV light forms a physical barrier that synergistically enhances the hemostatic properties of the HNTs. From the above, the results pave the way to develop a potential hemostatic antimicrobial dressing for clinical use in wound healing.


Assuntos
Monoterpenos Acíclicos , Quitosana , Hemostáticos , Hemostáticos/farmacologia , Quitosana/farmacologia , Hidrogéis/farmacologia , Antibacterianos/farmacologia , Cicatrização
2.
Langmuir ; 39(38): 13678-13687, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37713407

RESUMO

The self-assembly and stimuli-responsive properties of nanogel poly(n-isopropylacrylamide) (p(NIPAm)) and zwitterion-modified nanogel poly(n-isopropylacrylamide-co-sulfobetainemethacrylate) (p(NIPAm-co-SBMA)) were explored by dissipative particle dynamics simulations. Simulation results reveal that for both types of nanogel, it is beneficial to form spherical nanogels at polymer concentrations of 5-10%. When the chain length (L) elongates from 10 to 40, the sizes of the nanogels enlarge. As for the p(NIPAm) nanogel, it shows thermoresponsiveness; when it switches to the hydrophilic state, the nanogel swells, and vice versa. The zwitterion-modified nanogel p(NIPAm-co-SBMA) possesses thermoresponsiveness and ionic strength responsiveness concurrently. At 293 K, both hydrophilic p(NIPAm) and superhydrophilic polysulfobetaine methacrylate (pSBMA) could appear on the outer surface of the nanogel; however, at 318 K, superhydrophilic pSBMA is on the outer surface to cover the hydrophobic p(NIPAm) core. As the temperature rises, the nanogel shrinks and remains antifouling all through. The salt-responsive property can be reflected by the nanogel size; the volumes of the nanogels in saline systems are larger than those in salt-free systems as the ionic condition inhibits the shrinkage of the zwitterionic pSBMA. This work exhibits the temperature-responsive and salt-responsive behavior of zwitterion-modified-pNIPAm nanogels at the molecular level and provides guidance in antifouling nanogel design.

3.
Langmuir ; 39(6): 2422-2434, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36734609

RESUMO

Partial oxidation of methane (CH4) to methanol (CH3OH) remains a great challenge in the field of catalysis due to its low selectivity and productivity. Herein, Ag-O-Ag/graphene and Cu-O-Ag/graphene composite catalysts are proposed to oxidize methane (CH4) to methanol (CH3OH) by using the first-principles calculations. It is shown that reactive oxygen species (µ-O) on both catalysts can activate the C-H bond of CH4, and in addition to CH4 activation, the catalytic activity follows the order of Ag-O-Ag/graphene (singlet) > Ag-O-Ag/graphene (triplet) ≈ Cu-O-Ag/graphene (triplet) > Cu-O-Ag/graphene (singlet). For CH3OH* formation, the catalytic activity follows the order of Cu-O-Ag/graphene (triplet) > Ag-O-Ag/graphene (triplet) > Ag-O-Ag/graphene (singlet) > Cu-O-Ag/graphene (singlet). It can be inferred that the introduction of Cu not only reduces the use of noble metal Ag but also exhibits a catalytic effect comparable to that of the Ag-O-Ag/graphene catalyst. Our findings will provide a new avenue for understanding and designing highly effective catalysts for the direct conversion of CH4 to CH3OH.

4.
Phys Chem Chem Phys ; 25(6): 5114-5121, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36723019

RESUMO

Heavy metal Pb2+ pollutants have become an important environmental problem, which threatens public health and ecosystems worldwide. In this study, to explore the effective treatment of trace Pb2+ pollution in water, molecular dynamics simulation combined with DFT calculations was used to study the transportation behavior of Pb2+ using polygonal carbon nanotubes (PCNT: P = 4, 5, 6, 8)/graphene composites (PCNTs/G). It is shown that due to the confinement effect of PCNTs, both H2O and H3O+ can form a hydrogen-bonding network and transport them in the form of proton exchange through the PCNT channels. The trajectory shows that with the help of a hydrogen-bonding network, the probability of Pb2+ passing through the 8N channel is enhanced. Then, upon the fluorine modification of PCNTs, mutual effects of both the hydrogen-bonding network and electrophilic attraction make Pb2+ get through the channel of 8F. It is indicated that with respect to 4CNT/G, 5CNT/G, and 6CNT/G, 8CNT/G is not accurate for Pb2+ interception at the outlets. In addition, the RDF, and HOMO-LUMO orbitals indicate that the affinity from the hydrogen-bonding network and PCNT walls both play important roles in particle transportation. This work can not only provide a basic understanding of Pb2+ transportation in PCNTs from the perspective of diffusion but also be helpful to guide the strategy on how to deal with Pb2+ pollution in waters.

5.
ACS Appl Mater Interfaces ; 14(41): 46313-46323, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36194167

RESUMO

The development a photochemically driven polymeric composite for dental restorative materials to restore tooth cavities with antibacterial, biocompatibility, and outstanding mechanical properties is an urgent need for clinical application in stomatology. Herein, a series of polyurethane acrylate (PUA) prepolymers and antibacterial polyurethane acrylate quaternary ammonium salts (PUAQASs) were synthesized, and their mechanical and biological properties were explored. The unique secondary mercaptan with a long shelf life and low odor was used to reduce oxygen inhibition and increase cross-linking density; meanwhile, modified photocurable nano zirconia (nano ZrO2) enhances mechanical properties of the nanocomposites and possesses preeminent dispersion in the matrix. The results show that minimal inhibitory concentrations (MICs) of PUAQASs are 200 and 800 µg/mL for Staphylococcus aureus and Escherichia coli, respectively. The addition of secondary thiols significantly increases the photopolymerization rate and monomer conversion. The highest hardness and modulus reach 1.8 and 8.7 GPa compared to 1.8 and 8.3 GPa for commercial resin. The lap shear stress on the pig bone is 912 MPa, and that on commercial resin is 921 MPa. Most importantly, the photochemically driven polymeric composite has excellent biocompatibility and significantly better antimicrobial properties than commonly used commercial resins.


Assuntos
Nanocompostos , Compostos de Sulfidrila , Suínos , Animais , Compostos de Sulfidrila/química , Poliuretanos , Sais , Nanocompostos/química , Antibacterianos/farmacologia , Antibacterianos/química , Acrilatos , Polímeros , Compostos de Amônio Quaternário/química , Oxigênio , Resinas Compostas/química , Teste de Materiais
6.
ACS Appl Mater Interfaces ; 12(40): 45296-45305, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32931244

RESUMO

In order to solve the problem caused by oil spills and organic solvent contamination, novel magnetically inorganic/organic superhydrophobic fabrics are fabricated via a facile method. Cotton fabrics are immersed in a mixture of functionalized Co0.2Mg0.8Fe2O4 (FCMFO) nanoparticles, vinyl-terminated polydimethylsiloxane (VPDMS), trimethylolpropane triacrylate, and 2-hydroxy-2-methylpropiophenone before UV irradiation for 100 s to obtain the multifunctional superhydrophobic fabrics with magnetic property. The coated fabrics show excellent superhydrophobicity, and the water contact angle is 157.1° when the mass ratio of FCMFO nanoparticles to VPDMS is 0.3. These superhydrophobic fabrics have high oil/water separation efficiency (98.7% for dichloromethane/water) and high oil flux (71,506 L·m-2·h-1 for dichloromethane/water). Even after 20 separation cycles, oil/water separation efficiency and oil flux maintain 96.4% and 64,012 L·m-2·h-1, respectively. Furthermore, the magnetic property of these superhydrophobic fabrics could be used in the separation of oil from water. Moreover, the superhydrophobic fabrics possess exceptional self-cleaning performance, mechanical durability, chemical stability, and flame retardancy. These multifunctional superhydrophobic fabrics are potential for wide applications.

7.
ACS Appl Mater Interfaces ; 11(15): 14305-14312, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30762340

RESUMO

In this work, a novel anti-smudge coating system was developed by using hydroxyl-terminated hyperbranched polyester as a coating precursor, mono-hydroxyl-terminated poly(dimethylsiloxane) (PDMS) as an anti-smudge agent, and hexamethylene diisocyanate trimer as a curing agent. The resultant coatings with 0.5 wt % PDMS content incorporated are highly transparent and liquid repellent. They exhibit striking repellency against various liquids and display remarkable self-cleaning performance. Water, hexadecane, salt solution, strong alkali solution, strong acid solution, pump oil, and crude oil could slide off the coated surface without leaving any traces, and the dirt on the coated surface could be readily removed by water or oil. Besides, these coatings show potential application for anti-fingerprint and anti-graffiti due to the exceptional repellency of coated surface against artificial fingerprint liquid, oil-based ink, paint, and water-based smudge. Furthermore, they also possess superb chemical shielding ability and thus endow substrates with remarkable protection against exposure to harsh chemical conditions. Moreover, these coatings are mechanically robust against extensive abrasion, impact, and bending without compromising anti-smudge properties, and they also exhibit excellent adhesion to various substrates. Therefore, these newly developed coatings have tremendous potential for widespread applications.

8.
ACS Appl Mater Interfaces ; 10(30): 25697-25705, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29979018

RESUMO

Materials with multiple functions are highly desirable in practical applications. Developing multifunctional nanocomposites by a straightforward process is still a challenge. Here, a versatile nanocomposite has been developed by simple blending and pressing of multiwalled carbon nanotubes (MWCNTs) and modified polydimethylsiloxane (MPDMS). Because of the synergistic effect of MWCNTs and MPDMS, this nanocomposite exhibits outstanding hydrophobic property, striking self-cleaning capability, and excellent chemical stability against strong acid and strong base, which makes it possible to work under wet and even extreme chemical conditions. Besides, because of its flexibility, this nanocomposite can be reshaped, bended, twisted, and molded into on-demand patterns for special applications. Owing to the good distribution of MWCNTs, the nanocomposite shows high conductivity (with a sheet resistance of 86.33 Ω sq-1) and high healing efficiency (above 96.53%) in an electrical field, and it also exhibits outstanding performance in various electrical circuits and flexible electroluminescent devices. Furthermore, the inherent portability, recyclability, and reusability of this nanocomposite make it more convenient and environmentally friendly for practical applications. Thus, our work provides a new strategy to develop a multifunctional nanocomposite, and it shows tremendous potential in flexible electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...