Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Circ Arrhythm Electrophysiol ; 17(1): e012150, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38126205

RESUMO

BACKGROUND: MicroRNA-1 (miR1), encoded by the genes miR1-1 and miR1-2, is the most abundant microRNA in the heart and plays a critical role in heart development and physiology. Dysregulation of miR1 has been associated with various heart diseases, where a significant reduction (>75%) in miR1 expression has been observed in patient hearts with atrial fibrillation or acute myocardial infarction. However, it remains uncertain whether miR1-deficiency acts as a primary etiological factor of cardiac remodeling. METHODS: miR1-1 or miR1-2 knockout mice were crossbred to produce 75%-miR1-knockdown (75%KD; miR1-1+/-:miR1-2-/- or miR1-1-/-:miR1-2+/-) mice. Cardiac pathology of 75%KD cardiomyocytes/hearts was investigated by ECG, patch clamping, optical mapping, transcriptomic, and proteomic assays. RESULTS: In adult 75%KD hearts, the overall miR1 expression was reduced to ≈25% of the normal wild-type level. These adult 75%KD hearts displayed decreased ejection fraction and fractional shortening, prolonged QRS and QT intervals, and high susceptibility to arrhythmias. Adult 75%KD cardiomyocytes exhibited prolonged action potentials with impaired repolarization and excitation-contraction coupling. Comparatively, 75%KD cardiomyocytes showcased reduced Na+ current and transient outward potassium current, coupled with elevated L-type Ca2+ current, as opposed to wild-type cells. RNA sequencing and proteomics assays indicated negative regulation of cardiac muscle contraction and ion channel activities, along with a positive enrichment of smooth muscle contraction genes in 75%KD cardiomyocytes/hearts. miR1 deficiency led to dysregulation of a wide gene network, with miR1's RNA interference-direct targets influencing many indirectly regulated genes. Furthermore, after 6 weeks of bi-weekly intravenous tail-vein injection of miR1 mimics, the ejection fraction and fractional shortening of 75%KD hearts showed significant improvement but remained susceptible to arrhythmias. CONCLUSIONS: miR1 deficiency acts as a primary etiological factor in inducing cardiac remodeling via disrupting heart regulatory homeostasis. Achieving stable and appropriate microRNA expression levels in the heart is critical for effective microRNA-based therapy in cardiovascular diseases.


Assuntos
MicroRNAs , Camundongos , Humanos , Animais , MicroRNAs/genética , Proteômica , Remodelação Ventricular , Miócitos Cardíacos/metabolismo , Arritmias Cardíacas , Potenciais de Ação , Camundongos Knockout , Homeostase
4.
J Pers Med ; 12(10)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36294819

RESUMO

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a genetic disorder of desmosomal and structural proteins that is characterized by fibro-fatty infiltrate in the ventricles and fatal arrhythmia that can occur early before significant structural abnormalities. Most ARVC mutations interfere with ß-catenin-dependent transcription that enhances adipogenesis; however, the mechanistic pathway to arrhythmogenesis is not clear. We hypothesized that adipogenic conditions play an important role in the formation of arrhythmia substrates in ARVC. Cardiac myocyte monolayers co-cultured for 2-4 days with mesenchymal stem cells (MSC) were derived from human-induced pluripotent stem cells with the ARVC5 TMEM43 p.Ser358Leu mutation. The TMEM43 mutation in myocyte co-cultures alone had no significant effect on impulse conduction velocity (CV) or APD. In contrast, when co-cultures were exposed to pro-adipogenic factors for 2-4 days, CV and APD were significantly reduced compared to controls by 49% and 31%, respectively without evidence of adipogenesis. Additionally, these arrhythmia substrates coincided with a significant reduction in IGF-1 expression in MSCs and were mitigated by IGF-1 treatment. These findings suggest that the onset of enhanced adipogenic signaling may be a mechanism of early arrhythmogenesis, which could lead to personalized treatment for arrhythmias associated with TMEM43 and other ARVC mutations.

5.
Circulation ; 145(22): 1663-1683, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35400201

RESUMO

BACKGROUND: Transcriptional reconfiguration is central to heart failure, the most common cause of which is dilated cardiomyopathy (DCM). The effect of 3-dimensional chromatin topology on transcriptional dysregulation and pathogenesis in human DCM remains elusive. METHODS: We generated a compendium of 3-dimensional epigenome and transcriptome maps from 101 biobanked human DCM and nonfailing heart tissues through highly integrative chromatin immunoprecipitation (H3K27ac [acetylation of lysine 27 on histone H3]), in situ high-throughput chromosome conformation capture, chromatin immunoprecipitation sequencing, assay for transposase-accessible chromatin using sequencing, and RNA sequencing. We used human induced pluripotent stem cell-derived cardiomyocytes and mouse models to interrogate the key transcription factor implicated in 3-dimensional chromatin organization and transcriptional regulation in DCM pathogenesis. RESULTS: We discovered that the active regulatory elements (H3K27ac peaks) and their connectome (H3K27ac loops) were extensively reprogrammed in DCM hearts and contributed to transcriptional dysregulation implicated in DCM development. For example, we identified that nontranscribing NPPA-AS1 (natriuretic peptide A antisense RNA 1) promoter functions as an enhancer and physically interacts with the NPPA (natriuretic peptide A) and NPPB (natriuretic peptide B) promoters, leading to the cotranscription of NPPA and NPPB in DCM hearts. We revealed that DCM-enriched H3K27ac loops largely resided in conserved high-order chromatin architectures (compartments, topologically associating domains) and their anchors unexpectedly had equivalent chromatin accessibility. We discovered that the DCM-enriched H3K27ac loop anchors exhibited a strong enrichment for HAND1 (heart and neural crest derivatives expressed 1), a key transcription factor involved in early cardiogenesis. In line with this, its protein expression was upregulated in human DCM and mouse failing hearts. To further validate whether HAND1 is a causal driver for the reprogramming of enhancer-promoter connectome in DCM hearts, we performed comprehensive 3-dimensional epigenome mappings in human induced pluripotent stem cell-derived cardiomyocytes. We found that forced overexpression of HAND1 in human induced pluripotent stem cell-derived cardiomyocytes induced a distinct gain of enhancer-promoter connectivity and correspondingly increased the expression of their connected genes implicated in DCM pathogenesis, thus recapitulating the transcriptional signature in human DCM hearts. Electrophysiology analysis demonstrated that forced overexpression of HAND1 in human induced pluripotent stem cell-derived cardiomyocytes induced abnormal calcium handling. Furthermore, cardiomyocyte-specific overexpression of Hand1 in the mouse hearts resulted in dilated cardiac remodeling with impaired contractility/Ca2+ handling in cardiomyocytes, increased ratio of heart weight/body weight, and compromised cardiac function, which were ascribed to recapitulation of transcriptional reprogramming in DCM. CONCLUSIONS: This study provided novel chromatin topology insights into DCM pathogenesis and illustrated a model whereby a single transcription factor (HAND1) reprograms the genome-wide enhancer-promoter connectome to drive DCM pathogenesis.


Assuntos
Cardiomiopatia Dilatada , Células-Tronco Pluripotentes Induzidas , Animais , Cardiomiopatia Dilatada/metabolismo , Cromatina/genética , Cromatina/metabolismo , Histonas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Fatores de Transcrição/genética
6.
J Mol Cell Cardiol ; 166: 107-115, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35247375

RESUMO

The electrophysiological properties of the heart include cardiac automaticity, excitation (i.e., depolarization and repolarization of action potential) of individual cardiomyocytes, and highly coordinated electrical propagation through the whole heart. An abnormality in any of these properties can cause arrhythmias. MicroRNAs (miRs) have been recognized as essential regulators of gene expression through the conventional RNA interference (RNAi) mechanism and are involved in a variety of biological events. Recent evidence has demonstrated that miRs regulate the electrophysiology of the heart through fine regulation by the conventional RNAi mechanism of the expression of ion channels, transporters, intracellular Ca2+-handling proteins, and other relevant factors. Recently, a direct interaction between miRs and ion channels has also been reported in the heart, revealing a biophysical modulation by miRs of cardiac electrophysiology. These advanced discoveries suggest that miR controls cardiac electrophysiology through two distinct mechanisms: immediate action through biophysical modulation and long-term conventional RNAi regulation. Here, we review the recent research progress and summarize the current understanding of how miR manipulates the function of ion channels to maintain the homeostasis of cardiac electrophysiology.


Assuntos
MicroRNAs , Arritmias Cardíacas/metabolismo , Técnicas Eletrofisiológicas Cardíacas , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo
7.
Autophagy ; 18(10): 2481-2494, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35220905

RESUMO

Defective mitophagy contributes to normal aging and various neurodegenerative and cardiovascular diseases. The newly developed methodologies to visualize and quantify mitophagy allow for additional progress in defining the pathophysiological significance of mitophagy in various model organisms. However, current knowledge regarding mitophagy relevant to human physiology is still limited. Model organisms such as mice might not be optimal models to recapitulate all the key aspects of human disease phenotypes. The development of the human-induced pluripotent stem cells (hiPSCs) may provide an exquisite approach to bridge the gap between animal mitophagy models and human physiology. To explore this premise, we take advantage of the pH-dependent fluorescent mitophagy reporter, mt-Keima, to assess mitophagy in hiPSCs and hiPSC-derived cardiomyocytes (hiPSC-CMs). We demonstrate that mt-Keima expression does not affect mitochondrial function or cardiomyocytes contractility. Comparison of hiPSCs and hiPSC-CMs during different stages of differentiation revealed significant variations in basal mitophagy. In addition, we have employed the mt-Keima hiPSC-CMs to analyze how mitophagy is altered under certain pathological conditions including treating the hiPSC-CMs with doxorubicin, a chemotherapeutic drug well known to cause life-threatening cardiotoxicity, and hypoxia that stimulates ischemia injury. We have further developed a chemical screening to identify compounds that modulate mitophagy in hiPSC-CMs. The ability to assess mitophagy in hiPSC-CMs suggests that the mt-Keima hiPSCs should be a valuable resource in determining the role mitophagy plays in human physiology and hiPSC-based disease models. The mt-Keima hiPSCs could prove a tremendous asset in the search for pharmacological interventions that promote mitophagy as a therapeutic target.Abbreviations: AAVS1: adeno-associated virus integration site 1; AKT/protein kinase B: AKT serine/threonine kinase; CAG promoter: cytomegalovirus early enhancer, chicken ACTB/ß-actin promoter; CIS: cisplatin; CRISPR: clustered regularly interspaced short palindromic repeats; FACS: fluorescence-activated cell sorting; FCCP: carbonyl cyanide p-trifluoromethoxyphenylhydrazone; hiPSC: human induced pluripotent stem cell; hiPSC-CMs: human induced pluripotent stem cell-derived cardiomyocytes; ISO: isoproterenol; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; PI3K: phosphoinositide 3-kinase; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; RT: room temperature; SB: SBI-0206965; ULK1: unc-51 like autophagy activating kinase 1.


Assuntos
Células-Tronco Pluripotentes Induzidas , Mitofagia , Actinas , Animais , Autofagia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona , Cisplatino , Doxorrubicina , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Isoproterenol , Camundongos , Proteínas Associadas aos Microtúbulos , Mitofagia/genética , Miócitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas c-akt , Serina , Sirolimo , Serina-Treonina Quinases TOR , Ubiquitina-Proteína Ligases/metabolismo
8.
Sci Rep ; 11(1): 20570, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663875

RESUMO

Chronic kidney disease (CKD) affects more than 20 million people in the US, and it is associated with a significantly increased risk of sudden cardiac death (SCD). Despite the significance, the mechanistic relationship between SCD and CKD is not clear and there are few effective therapies. Using optical mapping techniques, we tested the hypothesis that mouse models of progressive diabetic kidney disease (DKD) exhibit enhanced ventricular arrhythmia incidence and underlying arrhythmia substrates. Compared to wild-type mice, both Leprdb/db eNOS-/- (2KO) and high fat diet plus low dose streptozotocin (HFD + STZ) mouse models of DKD experienced sudden death and greater arrhythmia inducibility, which was more common with isoproterenol than programmed electrical stimulation. 2KO mice demonstrated slowed conduction velocity, prolonged action potential duration (APD), and myocardial fibrosis; both 2KO and HFD + STZ mice exhibited arrhythmias and calcium dysregulation with isoproterenol challenge. Finally, circulating concentrations of the uremic toxin asymmetric dimethylarginine (ADMA) were elevated in 2KO mice. Incubation of human cardiac myocytes with ADMA prolonged APD, as also observed in 2KO mice hearts ex vivo. The present study elucidates an arrhythmia-associated mechanism of sudden death associated with DKD, which may lead to more effective treatments in the vulnerable DKD patient population.


Assuntos
Arritmias Cardíacas/fisiopatologia , Nefropatias Diabéticas/fisiopatologia , Potenciais de Ação/fisiologia , Animais , Arritmias Cardíacas/patologia , Complicações do Diabetes/fisiopatologia , Diabetes Mellitus/fisiopatologia , Nefropatias Diabéticas/patologia , Modelos Animais de Doenças , Frequência Cardíaca/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/patologia , Taquicardia Ventricular/patologia , Taquicardia Ventricular/fisiopatologia , Imagens com Corantes Sensíveis à Voltagem/métodos
9.
Am J Transl Res ; 13(8): 9122-9128, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34540026

RESUMO

OBJECTIVE: To investigate the effect of neutrophil-to-lymphocyte ratio (NLR) on short-term prognosis in elderly patients with hip fracture. METHODS: Altogether, 124 elderly patients with hip fractures who underwent surgery in our hospital were retrospectively studied, and they were divided into survival group (n=98) and death group (n=26) according to their 1-year survival. General data of both groups were collected and compared, and indicators with statistical differences in univariate analysis were further examined by logistic regression analysis. Venous blood samples were drawn from all patients 1 day after the surgery to detect and compare NLR, serum procalcitonin (PCT) and C-reactive protein (CRP) levels between both groups. ROC curve was used to analyze the clinical value of NLR in predicting the prognosis of patients. NLR cutoff value obtained by the ROC curve analysis was adopted to divide the patients into high and low ratio groups, and Kaplan-Meier (K-M) curves were used to assess the survival rate of patients in both groups. RESULTS: There were significant differences in age, gender, marital status, medical history and American Society of Anesthesiologists (ASA) grades between both groups. Logistic regression analysis showed that advanced age (≥85 years), male gender, and higher ASA grades (III-IV) were risk factors for short-term poor prognosis in elderly patients with hip fracture. Compared with survival group, NLR, PCT and CRP levels were higher in death group. ROC curve showed that the AUC of NLR predicting patients' prognosis was 0.804 at a cutoff value of 6.939%. K-M curves showed that the overall survival was lower in high-ratio group than in low-ratio group. CONCLUSION: Advanced age (overall survival was lower in high-ratio group than in low-ratio group), male gender, and higher ASA grades (III-IV) were risk factors for short-term poor prognosis in elderly patients with hip rifracture. NLR has some clinical value in predicting and evaluating the prognosis of patients.

10.
Cells ; 10(7)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206684

RESUMO

Direct cardiac reprogramming of fibroblasts into induced cardiomyocytes (iCMs) is a promising approach but remains a challenge in heart regeneration. Efforts have focused on improving the efficiency by understanding fundamental mechanisms. One major challenge is that the plasticity of cultured fibroblast varies batch to batch with unknown mechanisms. Here, we noticed a portion of in vitro cultured fibroblasts have been activated to differentiate into myofibroblasts, marked by the expression of αSMA, even in primary cell cultures. Both forskolin, which increases cAMP levels, and TGFß inhibitor SB431542 can efficiently suppress myofibroblast differentiation of cultured fibroblasts. However, SB431542 improved but forskolin blocked iCM reprogramming of fibroblasts that were infected with retroviruses of Gata4, Mef2c, and Tbx5 (GMT). Moreover, inhibitors of cAMP downstream signaling pathways, PKA or CREB-CBP, significantly improved the efficiency of reprogramming. Consistently, inhibition of p38/MAPK, another upstream regulator of CREB-CBP, also improved reprogramming efficiency. We then investigated if inhibition of these signaling pathways in primary cultured fibroblasts could improve their plasticity for reprogramming and found that preconditioning of cultured fibroblasts with CREB-CBP inhibitor significantly improved the cellular plasticity of fibroblasts to be reprogrammed, yielding ~2-fold more iCMs than untreated control cells. In conclusion, suppression of CREB-CBP signaling improves fibroblast plasticity for direct cardiac reprogramming.


Assuntos
Plasticidade Celular , Reprogramação Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Proteínas de Membrana/metabolismo , Miocárdio/citologia , Fosfoproteínas/metabolismo , Transdução de Sinais , Animais , Benzamidas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Plasticidade Celular/efeitos dos fármacos , Células Cultivadas , Reprogramação Celular/efeitos dos fármacos , Colforsina/farmacologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dioxóis/farmacologia , Fibroblastos/efeitos dos fármacos , Camundongos Transgênicos , Miofibroblastos/citologia , Miofibroblastos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo
11.
Front Physiol ; 12: 661429, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33828490

RESUMO

Nav1.5, encoded by the gene SCN5A, is the predominant voltage-gated sodium channel expressed in the heart. It initiates the cardiac action potential and thus is crucial for normal heart rhythm and function. Dysfunctions in Nav1.5 have been involved in multiple congenital or acquired cardiac pathological conditions such as Brugada syndrome (BrS), Long QT Syndrome Type 3, and heart failure (HF), all of which can lead to sudden cardiac death (SCD) - one of the leading causes of death worldwide. Our lab has previously reported that Nav1.5 forms dimer channels with coupled gating. We also found that Nav1.5 BrS mutants can exert a dominant-negative (DN) effect and impair the function of wildtype (WT) channels through coupled-gating with the WT. It was previously reported that reduction in cardiac sodium currents (INa), observed in HF, could be due to the increased expression of an SCN5A splice variant - E28D, which results in a truncated sodium channel (Nav1.5-G1642X). In this study, we hypothesized that this SCN5A splice variant leads to INa reduction in HF through biophysical coupling with the WT. We showed that Nav1.5-G1642X is a non-functional channel but can interact with the WT, resulting in a DN effect on the WT channel. We found that both WT and the truncated channel Nav1.5-G1642X traffic at the cell surface, suggesting biophysical coupling. Indeed, we found that the DN effect can be abolished by difopein, an inhibitor of the biophysical coupling. Interestingly, the sodium channel polymorphism H558R, which has beneficial effect in HF patients, could also block the DN effect. In summary, the HF-associated splice variant Nav1.5-G1642X suppresses sodium currents in heart failure patients through a mechanism involving coupled-gating with the wildtype sodium channel.

12.
Circulation ; 143(16): 1597-1613, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33590773

RESUMO

BACKGROUND: MicroRNAs (miRs) play critical roles in regulation of numerous biological events, including cardiac electrophysiology and arrhythmia, through a canonical RNA interference mechanism. It remains unknown whether endogenous miRs modulate physiologic homeostasis of the heart through noncanonical mechanisms. METHODS: We focused on the predominant miR of the heart (miR1) and investigated whether miR1 could physically bind with ion channels in cardiomyocytes by electrophoretic mobility shift assay, in situ proximity ligation assay, RNA pull down, and RNA immunoprecipitation assays. The functional modulations of cellular electrophysiology were evaluated by inside-out and whole-cell patch clamp. Mutagenesis of miR1 and the ion channel was used to understand the underlying mechanism. The effect on the heart ex vivo was demonstrated through investigating arrhythmia-associated human single nucleotide polymorphisms with miR1-deficient mice. RESULTS: We found that endogenous miR1 could physically bind with cardiac membrane proteins, including an inward-rectifier potassium channel Kir2.1. The miR1-Kir2.1 physical interaction was observed in mouse, guinea pig, canine, and human cardiomyocytes. miR1 quickly and significantly suppressed IK1 at sub-pmol/L concentration, which is close to endogenous miR expression level. Acute presence of miR1 depolarized resting membrane potential and prolonged final repolarization of the action potential in cardiomyocytes. We identified 3 miR1-binding residues on the C-terminus of Kir2.1. Mechanistically, miR1 binds to the pore-facing G-loop of Kir2.1 through the core sequence AAGAAG, which is outside its RNA interference seed region. This biophysical modulation is involved in the dysregulation of gain-of-function Kir2.1-M301K mutation in short QT or atrial fibrillation. We found that an arrhythmia-associated human single nucleotide polymorphism of miR1 (hSNP14A/G) specifically disrupts the biophysical modulation while retaining the RNA interference function. It is remarkable that miR1 but not hSNP14A/G relieved the hyperpolarized resting membrane potential in miR1-deficient cardiomyocytes, improved the conduction velocity, and eliminated the high inducibility of arrhythmia in miR1-deficient hearts ex vivo. CONCLUSIONS: Our study reveals a novel evolutionarily conserved biophysical action of endogenous miRs in modulating cardiac electrophysiology. Our discovery of miRs' biophysical modulation provides a more comprehensive understanding of ion channel dysregulation and may provide new insights into the pathogenesis of cardiac arrhythmias.


Assuntos
Canais Iônicos/metabolismo , Potenciais da Membrana/fisiologia , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Cães , Cobaias , Humanos , Camundongos
13.
Methods Mol Biol ; 2239: 33-46, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33226611

RESUMO

Over the last decade, great achievements have been made in the field of direct epigenetic reprogramming, which converts one type of adult somatic cells into another type of differentiated cells, such as direct reprogramming of fibroblasts into cardiomyocytes, without passage through an undifferentiated pluripotent stage. Discovery of direct cardiac reprogramming offers a promising therapeutic strategy to prevent/attenuate cardiac fibrotic remodeling in a diseased heart. Furthermore, in vitro reprogramming of fibroblasts into cardiomyocyte-like cells provides new avenues to conduct basic mechanistic studies, to test drugs, and to model cardiac diseases in a dish. Here, we describe a detailed step-by-step protocol for in vitro production of induced cardiomyocyte-like cells (iCMs) from fibroblasts. The related procedures include high-quality fibroblast isolation of different origins (neonatal cardiac, tail-tip, and adult cardiac fibroblasts), retroviral preparation of reprogramming factors, and iCM generation by fibroblast reprogramming via retroviral transduction of Gata4, Mef2c, and Tbx5. A detailed written protocol will help many other laboratories, inexperienced in this area, to use and further improve this technology in their studies of cardiac regenerative medicine.


Assuntos
Técnicas de Cultura de Células/métodos , Diferenciação Celular/genética , Reprogramação Celular/genética , Fibroblastos/citologia , Miócitos Cardíacos/citologia , Fatores de Transcrição/genética , Animais , Células Cultivadas , Epigênese Genética , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Citometria de Fluxo , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Vetores Genéticos , Humanos , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Camundongos , Desenvolvimento Muscular/efeitos dos fármacos , Desenvolvimento Muscular/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Retroviridae/genética , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo
14.
Circ Arrhythm Electrophysiol ; 13(10): e008740, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32755466

RESUMO

BACKGROUND: The mesenchymal stem cell (MSC), known to remodel in disease and have an extensive secretome, has recently been isolated from the human heart. However, the effects of normal and diseased cardiac MSCs on myocyte electrophysiology remain unclear. We hypothesize that in disease the inflammatory secretome of cardiac human MSCs (hMSCs) remodels and can regulate arrhythmia substrates. METHODS: hMSCs were isolated from patients with or without heart failure from tissue attached to extracted device leads and from samples taken from explanted/donor hearts. Failing hMSCs or nonfailing hMSCs were cocultured with normal human cardiac myocytes derived from induced pluripotent stem cells. Using fluorescent indicators, action potential duration, Ca2+ alternans, and spontaneous calcium release (SCR) incidence were determined. RESULTS: Failing and nonfailing hMSCs from both sources exhibited similar trilineage differentiation potential and cell surface marker expression as bone marrow hMSCs. Compared with nonfailing hMSCs, failing hMSCs prolonged action potential duration by 24% (P<0.001, n=15), increased Ca2+ alternans by 300% (P<0.001, n=18), and promoted spontaneous calcium release activity (n=14, P<0.013) in human cardiac myocytes derived from induced pluripotent stem cells. Failing hMSCs exhibited increased secretion of inflammatory cytokines IL (interleukin)-1ß (98%, P<0.0001) and IL-6 (460%, P<0.02) compared with nonfailing hMSCs. IL-1ß or IL-6 in the absence of hMSCs prolonged action potential duration but only IL-6 increased Ca2+ alternans and promoted spontaneous calcium release activity in human cardiac myocytes derived from induced pluripotent stem cells, replicating the effects of failing hMSCs. In contrast, nonfailing hMSCs prevented Ca2+ alternans in human cardiac myocytes derived from induced pluripotent stem cells during oxidative stress. Finally, nonfailing hMSCs exhibited >25× higher secretion of IGF (insulin-like growth factor)-1 compared with failing hMSCs. Importantly, IGF-1 supplementation or anti-IL-6 treatment rescued the arrhythmia substrates induced by failing hMSCs. CONCLUSIONS: We identified device leads as a novel source of cardiac hMSCs. Our findings show that cardiac hMSCs can regulate arrhythmia substrates by remodeling their secretome in disease. Importantly, therapy inhibiting (anti-IL-6) or mimicking (IGF-1) the cardiac hMSC secretome can rescue arrhythmia substrates.


Assuntos
Potenciais de Ação , Arritmias Cardíacas/metabolismo , Sinalização do Cálcio , Insuficiência Cardíaca/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mediadores da Inflamação/metabolismo , Células-Tronco Mesenquimais/metabolismo , Miócitos Cardíacos/metabolismo , Comunicação Parácrina , Adulto , Idoso , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Estudos de Casos e Controles , Linhagem da Célula , Células Cultivadas , Técnicas de Cocultura , Feminino , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Cinética , Masculino , Células-Tronco Mesenquimais/patologia , Pessoa de Meia-Idade , Miócitos Cardíacos/patologia , Fenótipo
15.
Cells ; 8(7)2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31277520

RESUMO

Coronary artery disease is the most common form of cardiovascular diseases, resulting in the loss of cardiomyocytes (CM) at the site of ischemic injury. To compensate for the loss of CMs, cardiac fibroblasts quickly respond to injury and initiate cardiac remodeling in an injured heart. In the remodeling process, cardiac fibroblasts proliferate and differentiate into myofibroblasts, which secrete extracellular matrix to support the intact structure of the heart, and eventually differentiate into matrifibrocytes to form chronic scar tissue. Discovery of direct cardiac reprogramming offers a promising therapeutic strategy to prevent/attenuate this pathologic remodeling and replace the cardiac fibrotic scar with myocardium in situ. Since the first discovery in 2010, many progresses have been made to improve the efficiency and efficacy of reprogramming by understanding the mechanisms and signaling pathways that are activated during direct cardiac reprogramming. Here, we overview the development and recent progresses of direct cardiac reprogramming and discuss future directions in order to translate this promising technology into an effective therapeutic paradigm to reverse cardiac pathological remodeling in an injured heart.


Assuntos
Reprogramação Celular/genética , Doença da Artéria Coronariana/terapia , Miocárdio/patologia , Medicina Regenerativa/métodos , Fatores de Transcrição/genética , Animais , Doença da Artéria Coronariana/patologia , Modelos Animais de Doenças , Matriz Extracelular/patologia , Fibrose , Regulação da Expressão Gênica , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Injeções Intralesionais , Miocárdio/citologia , Miócitos Cardíacos/fisiologia , Miofibroblastos/fisiologia , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo
16.
Int J Mol Sci ; 19(5)2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-29734659

RESUMO

Direct reprogramming of fibroblasts into induced cardiomyocytes (iCMs) holds a great promise for regenerative medicine and has been studied in several major directions. However, cell-cycle regulation, a fundamental biological process, has not been investigated during iCM-reprogramming. Here, our time-lapse imaging on iCMs, reprogrammed by Gata4, Mef2c, and Tbx5 (GMT) monocistronic retroviruses, revealed that iCM-reprogramming was majorly initiated at late-G1- or S-phase and nearly half of GMT-reprogrammed iCMs divided soon after reprogramming. iCMs exited cell cycle along the process of reprogramming with decreased percentage of 5-ethynyl-20-deoxyuridine (EdU)⁺/α-myosin heavy chain (αMHC)-GFP⁺ cells. S-phase synchronization post-GMT-infection could enhance cell-cycle exit of reprogrammed iCMs and yield more GFPhigh iCMs, which achieved an advanced reprogramming with more expression of cardiac genes than GFPlow cells. However, S-phase synchronization did not enhance the reprogramming with a polycistronic-viral vector, in which cell-cycle exit had been accelerated. In conclusion, post-infection synchronization of S-phase facilitated the early progression of GMT-reprogramming through a mechanism of enhanced cell-cycle exit.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Diferenciação Celular/genética , Reprogramação Celular/genética , Miócitos Cardíacos/citologia , Animais , Ciclo Celular/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Medicina Regenerativa/tendências
18.
PLoS One ; 12(8): e0183000, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28796841

RESUMO

The direct reprogramming of cardiac fibroblasts into induced cardiomyocyte (CM)-like cells (iCMs) holds great promise in restoring heart function. We previously found that human fibroblasts could be reprogrammed toward CM-like cells by 7 reprogramming factors; however, iCM reprogramming in human fibroblasts is both more difficult and more time-intensive than that in mouse cells. In this study, we investigated if additional reprogramming factors could quantitatively and/or qualitatively improve 7-factor-mediated human iCM reprogramming by single-cell quantitative PCR. We first validated 46 pairs of TaqMan® primers/probes that had sufficient efficiency and sensitivity to detect the significant difference of gene expression between individual H9 human embryonic stem cell (ESC)-differentiated CMs (H9CMs) and human fibroblasts. The expression profile of these 46 genes revealed an improved reprogramming in 12-week iCMs compared to 4-week iCMs reprogrammed by 7 factors, indicating a prolonged stochastic phase during human iCM reprogramming. Although none of additional one reprogramming factor yielded a greater number of iCMs, our single-cell qPCR revealed that additional HAND2 or microRNA-1 could facilitate the silencing of fibroblast genes and yield a better degree of reprogramming in more reprogrammed iCMs. Noticeably, the more HAND2 expressed, the higher-level were cardiac genes activated in 7Fs+HAND2-reprogrammed iCMs. In conclusion, HAND2 and microRNA-1 could help 7 factors to facilitate the early progress of iCM-reprogramming from human fibroblasts. Our study provides valuable information to further optimize a method of direct iCM-reprogramming in human cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Reprogramação Celular , Células-Tronco Embrionárias Humanas/citologia , MicroRNAs/genética , Miócitos Cardíacos/citologia , Diferenciação Celular , Linhagem Celular , Técnicas de Reprogramação Celular , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Miócitos Cardíacos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
19.
Stem Cell Rev Rep ; 13(5): 631-643, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28623610

RESUMO

The inward rectifier potassium current (IK1) is generally thought to suppress cardiac automaticity by hyperpolarizing membrane potential (MP). We recently observed that IK1 could promote the spontaneously-firing automaticity induced by upregulation of pacemaker funny current (If) in adult ventricular cardiomyocytes (CMs). However, the intriguing ability of IK1 to activate If and thereby promote automaticity has not been explored. In this study, we combined mathematical and experimental assays and found that only IK1 and If, at a proper-ratio of densities, were sufficient to generate rhythmic MP-oscillations even in unexcitable cells (i.e. HEK293T cells and undifferentiated mouse embryonic stem cells [ESCs]). We termed this effect IK1-induced If activation. Consistent with previous findings, our electrophysiological recordings observed that around 50% of mouse (m) and human (h) ESC-differentiated CMs could spontaneously fire action potentials (APs). We found that spontaneously-firing ESC-CMs displayed more hyperpolarized maximum diastolic potential and more outward IK1 current than quiescent-yet-excitable m/hESC-CMs. Rather than classical depolarization pacing, quiescent mESC-CMs were able to fire APs spontaneously with an electrode-injected small outward-current that hyperpolarizes MP. The automaticity to spontaneously fire APs was also promoted in quiescent hESC-CMs by an IK1-specific agonist zacopride. In addition, we found that the number of spontaneously-firing m/hESC-CMs was significantly decreased when If was acutely upregulated by Ad-CGI-HCN infection. Our study reveals a novel role of IK1 promoting the development of cardiac automaticity in m/hESC-CMs through a mechanism of IK1-induced If activation and demonstrates a synergistic interaction between IK1 and If that regulates cardiac automaticity.


Assuntos
Potenciais de Ação/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Miócitos Cardíacos/metabolismo , Periodicidade , Canais de Potássio Corretores do Fluxo de Internalização/genética , Potenciais de Ação/efeitos dos fármacos , Adenoviridae/genética , Adenoviridae/metabolismo , Animais , Benzamidas/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Células HEK293 , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Lentivirus/genética , Lentivirus/metabolismo , Camundongos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Marca-Passo Artificial , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Transgenes
20.
Cell ; 167(7): 1734-1749.e22, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27984724

RESUMO

Mutation of highly conserved residues in transcription factors may affect protein-protein or protein-DNA interactions, leading to gene network dysregulation and human disease. Human mutations in GATA4, a cardiogenic transcription factor, cause cardiac septal defects and cardiomyopathy. Here, iPS-derived cardiomyocytes from subjects with a heterozygous GATA4-G296S missense mutation showed impaired contractility, calcium handling, and metabolic activity. In human cardiomyocytes, GATA4 broadly co-occupied cardiac enhancers with TBX5, another transcription factor that causes septal defects when mutated. The GATA4-G296S mutation disrupted TBX5 recruitment, particularly to cardiac super-enhancers, concomitant with dysregulation of genes related to the phenotypic abnormalities, including cardiac septation. Conversely, the GATA4-G296S mutation led to failure of GATA4 and TBX5-mediated repression at non-cardiac genes and enhanced open chromatin states at endothelial/endocardial promoters. These results reveal how disease-causing missense mutations can disrupt transcriptional cooperativity, leading to aberrant chromatin states and cellular dysfunction, including those related to morphogenetic defects.


Assuntos
Fator de Transcrição GATA4/genética , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Cromatina , Elementos Facilitadores Genéticos , Feminino , Coração/crescimento & desenvolvimento , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Mutação de Sentido Incorreto , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Proteínas com Domínio T/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...