Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 81(9): 3693-8, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19351143

RESUMO

A novel microfluidic picoliter-scale sample introduction approach was developed by combining the spontaneous injection approach with a capillary electrophoresis (CE) system based on a short capillary and slotted-vial array. A droplet splitting phenomenon at the capillary inlet end during the spontaneous sample introduction process was observed for the first time. On the basis of this phenomenon, a translational spontaneous injection approach was established to reduce sample injection volumes to the sub-100 pL range. A versatile high-speed capillary electrophoresis (HSCE) system was built on the basis of this sample injection approach with separation performance comparable to or even better than those reported in microfluidic chip-based CE systems. The HSCE system was composed of a short fused-silica capillary and an automated sample introduction system with slotted sample and buffer reservoirs and a computer-programmed translational stage. The translational spontaneous sample injection was performed by linearly moving the stage, allowing the capillary inlet first to enter the sample solution and then removing it. A droplet was left at the tip end and spontaneously drawn into the capillary by surface tension effect to achieve sample injection. The stage was continuously moved to allow the capillary inlet to be immersed into the buffer solution, and CE separation was performed by applying a high voltage between the buffer and waste reservoirs. With the use of the novel system, high-speed and efficient capillary zone electrophoresis (CZE) separation of a mixture of five fluorescein isothiocyanate (FITC) labeled amino acids was achieved within 5.4 s in a short capillary with a separation length of 15 mm, reaching separation efficiencies up to 0.40 microm plate height. Outstanding peak height precisions ranging from 1.2% to 3.7% RSD were achieved in 51 consecutive separations. By extension of the separation length to 50 mm, both high-speed and high-resolution CZE separation of eight FITC-labeled amino acids could be obtained in less than 21 s with theoretical plates ranging from 163,000 to 251,000 (corresponding to 0.31-0.20 microm plate heights). The present HSCE system also allowed fast chiral separations of FITC-labeled amino acids under micellar electrokinetic chromatography (MEKC) mode within 6.5 s.


Assuntos
Eletroforese Capilar/métodos , Técnicas Analíticas Microfluídicas/métodos , Aminoácidos/química , Aminoácidos/isolamento & purificação , Fluoresceína-5-Isotiocianato/química , Micelas , Reprodutibilidade dos Testes , Coloração e Rotulagem , Estereoisomerismo , Fatores de Tempo
2.
Anal Chem ; 78(11): 3827-34, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16737244

RESUMO

In this work, a simple LIF detection system based on an orthogonal optical arrangement for microfluidic chips was developed. Highly sensitive detection was achieved by detecting the fluorescence light emitted in the microchannel through the sidewall of the chip to reduce scattered light interference from the laser source. A special crossed-channel configuration, with a 1.5-mm distance from the separation channel to the sidewall of the glass chip, was designed in order to facilitate collection of emitted fluorescence light through the sidewall. The significant difference in intensity distribution of scattered laser light on the chip plane observed in this study was fully exploited to optimize S/N ratio of detected signals by rejection of scattered light, both through systematic measurements and employing ray-tracing simulation. A fluorescence collection angle of 45 degrees in the chip plane gave the best result, with a scattered light intensity 1/38 of that obtained at an angle of 90 degrees. Sodium fluorescein and fluorescein isothiocyanate-labeled amino acids were used as model samples to demonstrate the performance of the LIF system. A detection limit (S/N = 3) of 1.1 pM fluorescein was obtained, which is comparable to that of optimized confocal LIF systems for chip-based capillary electrophoresis. Apart from the high detection power, the system also has the advantages of simple optical structure, compactness, and ease in building.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...