Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Lab Anal ; 36(6): e24422, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35466471

RESUMO

BACKGROUND: Long noncoding RNAs (LncRNAs) plays a vital role in tumorigenesis and development. The molecular mechanism of SNHG1 in renal cell carcinoma (RCC) has not been illustrated. The aim of this research was to explore the expression and function of LncRNA SNHG1 in RCC. MATERIAL AND METHODS: The expression of SNHG1 in clinical tissues and RCC cell lines was detected. Luciferase reporter assay was performed to verify the correlation between SNHG1, miR-103a, and HMGA2. CCK-8 assay was performed to examine cell viability. Cell apoptosis was analyzed using flow cytometry. Cell invasion capacity was determined by Transwell assays. The protein level of HMGA2 was analyzed by Western blotting. RESULTS: The expression of SNHG1 markedly increased in RCC tissues and cell lines. Subsequent studies identified SNHG1 as a miRNA sponge for miR-103a. In addition, SNHG1 knockdown and miR-103a overexpression significantly inhibited progression of RCC. miR-103a also regulated HMGA2 levels. CONCLUSION: Our findings showed that SNHG1 was upregulated in RCC cells and tissues. SNHG1 promoted the malignant characteristics of RCC cells. Its regulatory effect may be regulation of HMGA2 by sponging miR-103a. Therefore, Our study facilitates the understanding of SNHG1 function in RCC.


Assuntos
Carcinoma de Células Renais , Proteína HMGA2 , Neoplasias Renais , MicroRNAs , RNA Longo não Codificante , Apoptose/genética , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Proteína HMGA2/genética , Proteína HMGA2/metabolismo , Humanos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
2.
Cancer Med ; 10(11): 3674-3688, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33973730

RESUMO

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is one of the most prevalent malignant diseases in the urinary system with more than 140,000 related deaths annually. Ubiquitination-deubiquitination homeostasis is an important factor in ccRCC progression; ubiquitin-specific peptidase 53 (USP53) belongs to the family of deubiquitinating enzymes, but its functions are rarely reported. METHODS: Databases obtained from GEO and TCGA were analyzed to reveal the role of USP53 in ccRCC. CCK-8/BrdU and EDU assays were used to detect the proliferation of ccRCC after USP53 overexpression or knockdown. A tumor xenograft experiment was used to verify the effect of the proliferation of ccRCC after USP53 knockdown. Transwell assays were used to detect the metastasis of ccRCC after USP53 overexpression or knockdown. RNA sequencing and western blot analysis were employed to detect the change in genes after USP53 overexpression and knockdown. Then we tested the effect of USP53 on IκBα protein stability through western blot analysis. Detect the effect of USP53 on IκBα ubiquitination in vitro by immunoprecipitation method. RESULTS: USP53 expression was downregulated in ccRCC tissues and USP53 expression was significantly negatively correlated with the tumor progression and clinical prognosis. The ability of growth and metastasis of ccRCC was inhibited after USP53 overexpression. In addition, USP53 knockdown promoted ccRCC growth and metastasis. Moreover, USP53 knockdown promoted the ability of clone formation of ccRCC in vivo. NF-κB signaling pathway significantly enriched and downregulated in USP53 overexpressed cells, and genes in the NF-κB pathway (such as IL1B, CXCL1-3, RELA, RELB, etc.) were obviously downregulated in USP53 overexpressed cells. USP53 overexpression decreased the phosphorylation of IKKß and P65 in both Caki-1 and 786-O cells, and the expression of IκBα was increased. Phosphorylation of IKKß and P65 was increased in both Caki-1 and 786-O cells after USP53 knockdown. As the expression of USP53 increases, the protein expression of IκBα was also gradually increased and USP53 reduced the ubiquitination of IκBα. CONCLUSION: In summary, our data indicate that USP53 inhibits the inactivation of the NF-κB pathway by reducing the ubiquitination of IκBα to further inhibit ccRCC proliferation and metastasis. These findings may help understand the pathogenesis of ccRCC and introduce new potential therapeutic targets for kidney cancer patients.


Assuntos
Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Proteínas de Neoplasias/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Animais , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/secundário , Linhagem Celular Tumoral , Proliferação de Células , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Bases de Dados Genéticas , Regulação para Baixo , Feminino , Inativação Gênica , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Neoplasias Renais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Inibidor de NF-kappaB alfa/genética , Fosforilação , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Fator de Transcrição RelB/genética , Proteases Específicas de Ubiquitina/genética , Ubiquitinação
3.
Biochem Biophys Res Commun ; 519(4): 689-696, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31542232

RESUMO

USP46, a member of the ubiquitin-specific protease family, plays essential roles in cancer cell proliferation and metastasis and is used as a candidate target for cancer therapeutics. However, the effects of USP46 on renal cell carcinoma (RCC) and its underlying molecular mechanism remain unknown. In this study, the predictive and prognostic relevance of USP46 in RCC, patient-derived primary tissues, and normal liver tissues obtained from the TCGA dataset were analyzed for the USP46 mRNA levels or prognostic relevance. Gain-of-function or loss-of-function assays were used to evaluate the vital roles of USP46 in tumor cell proliferation and cell migration. As a result, the USP46 expression level in RCC is highly decreased compared to normal tissues, and the Kaplan-Meier curve showed that USP46 high expression patients had good prognoses. Functionally, the forced expression of USP46 significantly restrained tumor cell proliferation, colony formation, and cell migration. The shRNA mediated USP46 knockdown cells exhibited the opposite results. We further showed that ectopically expressed USP46 obviously inhibited the AKT signaling pathway in cancer cells, while USP46 depletion caused a dramatic increase in AKT activity reflected by phosphorylation in the serine and threonine residues of AKT or downstream p70S6K1. Importantly, MK2206, a specific AKT inhibitor, completely counteracted the effects on cell proliferation, cell migration, and AKT activity in the USP46 depletion cells. We thus revealed a novel mechanism of USP46 regulation in RCC, and our data indicate that USP46 is a tumor suppressor in RCC via AKT signaling pathway inactivation.


Assuntos
Carcinogênese/genética , Carcinoma de Células Renais/genética , Endopeptidases/genética , Neoplasias Renais/genética , Proteínas Proto-Oncogênicas c-akt/genética , Carcinogênese/metabolismo , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Endopeptidases/metabolismo , Células HEK293 , Humanos , Estimativa de Kaplan-Meier , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...