Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 169141, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38072258

RESUMO

Biomass-derived carbon materials have the characteristics of a wide range of precursor sources, controllable carbon nano-dimension, large specific surface area and abundant heteroatoms doping. At present, biomass-derived carbon materials have been widely used in electrochemical energy storage devices, especially the research and development of biomass-derived carbon materials for supercapacitors has become mature and in-depth. Therefore, it is of importance to summarize the advanced technologies and strategies for optimizing biomass-derived carbon materials for supercapacitors, which will effectively promote the further development of high-performance supercapacitors. In this review, the recent research progress of biomass-derived carbon materials is provided in detail, including the selection of biomass precursors, the design of carbon nano-dimension and the theory of heteroatom doping. Besides, the preparation methods of biomass-derived carbon materials and the related processes of optimizing the electrochemical performance are also summarized. This review ends with the perspectives for future research directions and challenges in the field of biomass-derived carbon materials for electrochemical applications. This review aims to provide helpful reference information for the nano-dimensional design and electrochemical performance optimization of biomass-derived carbon materials for the practical application of supercapacitors.

2.
J Colloid Interface Sci ; 630(Pt B): 751-761, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36347101

RESUMO

Spinel iron cobaltite (FeCo2O4) with high theoretical capacity is a promising positive electrode material for building high-performance supercapacitors. However, its inherent poor conductivity and deficient electrochemical active sites hinder the improvement of its electrochemical kinetics behavior. Herein, phosphate ions modified FeCo2O4 is obtained in the presence of oxygen vacancies (P-FeCo2O4-x) by a simple metal organic framework gel-derived strategy. Phosphate ions added on the surface of P-FeCo2O4-x greatly enhances its surface activity, thus prompting the faster charge storage kinetics of the electrode material. Due to its ample electrochemical active sites and rapid ion diffusion and electron mobility, the optimized P-FeCo2O4-x electrode delivers a superior specific capacity of 1568.8 F g-1 (784.4 C g-1) at a current density of 1 A/g and has an excellent cycling stability with 93.3 % initial capacity retention ratio after 5000 cycles. More impressively, the assembled asymmetric supercapacitor consisting of P-FeCo2O4-x and activated carbon which act as positive and negative electrode materials, respectively displays a favorable energy density of 60.2 Wh kg-1 at a power density of 800 W kg-1 and has a long cycling lifespan. These results demonstrate the potential importance of modifying the surface of spinel cobaltite with phosphate ions and incorporating oxygen defects in it as a facile strategy for enhancing the electrochemical kinetics of electrode materials.

3.
Soft Matter ; 18(48): 9153-9162, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36458603

RESUMO

The artificial biomimetic sensory hair as state-of-art electronics has drawn great attention from academic theorists of industrial production given its potential application in soft robotics, environmental exploration and health monitoring. However, it still remains a challenge to develop highly sensitive electronic sensory hair with fast response. In this study, a bio-inspired electronic whisker (e-whisker) with a hollow polymer shell and a liquid metal core was prepared by microinjection for airflow measurement and detection of obstacles. In addition, we illustrated the effect of liquid metal hysteresis on its distribution in microchannels on deformation. The difference in the deformed velocity between the selected fiber and EGaIn would result in a disturbance emerging in the liquid metal channel, which further causes a variation in resistance. Taking advantage of this phenomenon, the integrated fiber e-whisker can be employed to detect tiny airflow and disturbance. The experimental results indicate that the fiber sensor can detect the airflow velocity as low as 0.2 m s-1 within 0.1 s. The e-whisker can accurately monitor rainfall, human motion and object velocity. This work sheds light on the liquid metal viscosity-induced sensing mechanism and offers a novel strategy to fabricate high-performance velocity sensors.


Assuntos
Robótica , Vibrissas , Animais , Humanos , Vibrissas/fisiologia , Eletrônica , Biomimética , Movimento (Física) , Metais
4.
Artigo em Inglês | MEDLINE | ID: mdl-35839288

RESUMO

As as emerging innovation, electronic textiles have shown promising potential in health monitoring, energy harvesting, temperature regulation, and human-computer interactions. To access broader application scenarios, numerous e-textiles have been designed with a superhydrophobic surface to steer clear of interference from humidity or chemical decay. Nevertheless, even the cutting-edge electronic textiles (e-textiles) still have difficulty in realizing superior conductivity and satisfactory water repellency simultaneously. Herein, a facile and efficient approach to integrate a hierarchical elastic e-textile is proposed by electroless silver plating on GaIn alloy liquid metal coated textiles. The continuous uneven surface of AgNPs and deposition of FAS-17 endow the textile with exceptional and robust superhydrophobic performance, in which the conductivity and the contact angle of the as-made textile could reach 2145 ± 122 S/cm and 161.5 ± 2.1°, respectively. On the basis of such excellent conductivity, the electromagnetic interference (EMI) shielding function is excavated and the average shielding efficiency (SE) reaches about 87.56 dB within frequencies of 8.2-12.4 GHz. Furthermore, due to its high elasticity and low modulus, the textile can serve as a wearable strain sensor for motion detection, health monitoring, and underwater message transmission. This work provides a novel route to fabricate high-performance hydrophobic e-textiles, in which the encapsulation strategy could be referenced for the further development of conductive textiles.

5.
RSC Adv ; 12(15): 8936-8939, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35424857

RESUMO

Hollow microspheres with high specific surface area are widely used in thermal insulation, drug delivery and sustained release, catalysis and optical absorption. Eutectic gallium-indium (EGaIn) undergoes phase transformation and oxidation when heated in aqueous solution, which can provide a crystal seed and preferential growth environment for nanomaterials. Therefore, it is very promising to further study the application of liquid metal in functional and structural nanomaterials. In this study, a EGaIn-based ice cream-shaped hollow sphere array with nanostructures was firstly synthesized on the designed hole array model using a hydrothermal process, and then the surface was further modified by fluorination to form a superhydrophobic film. Different sizes of the hollow Eutectic gallium-indium zinc oxide (EGaIn-ZnO) microspheres could be easily achieved by varying the size of the model, hence leading to controllable wettability. Furthermore, hollow microspheres hold much air, making it feasible for application in the field of anti-ice and thermal insulation.

6.
Materials (Basel) ; 15(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35208147

RESUMO

This study presents a U-shaped dual-frequency-reconfigurable liquid-metal monopole antenna. Eutectic Gallium-Indium (EGaIn) was used as a conductive fluid and filled in the two branches of the U-shaped glass tube. A precision syringe pump was connected to one of the branches of the U-shaped tube by a silicone tube to drive EGaIn, forming a height difference between the two liquid levels. When the height of liquid metal in the two branches met the initial condition of L1 = L2 = 10 mm, and L1 increased from 10 mm to 18 mm, the two branches obtained two working bandwidths of 2.27-4.98 GHz and 2.71-8.58 GHz, respectively. The maximum peak gain was 4.00 dBi. The initial amount of EGaIn also affected the available operating bandwidth. When the liquid metal was perfused according to the initial condition: L1 = L2 = 12 mm, and L1 was adjusted within the range of 12-20 mm, the two branches had the corresponding working bandwidths of 2.18-4.32 GHz and 2.57-9.09 GHz, and the measured maximum peak gain was 3.72 dBi. The simulation and measurement data corresponded well. A series of dual-frequency-reconfigurable antennas can be obtained by changing the initial amount of EGaIn. This series of antennas may have broad application prospects in fields such as base stations and navigation.

7.
Micromachines (Basel) ; 12(12)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34945389

RESUMO

Room temperature liquid metal (LM) showcases a great promise in the fields of flexible functional thin film due to its favorable characteristics of flexibility, inherent conductivity, and printability. Current fabrication strategies of liquid metal film are substrate structure specific and sustain from unanticipated smearing effects. Herein, this paper reported a facile fabrication of liquid metal composite film via sequentially regulating oxidation to change the adhesion characteristics, targeting the ability of electrical connection and electrothermal conversion. The composite film was then made of the electrically resistive layer (oxidizing liquid metal) and the insulating Polyimide film (PI film) substrate, which has the advantages of electrical insulation and ultra-wide temperature working range, and its thickness is only 50 µm. The electrical resistance of composite film can maintain constant for 6 h and could work normally. Additionally, the heating film exhibited excellent thermal switching characteristics that can reach temperature equilibrium within 100 s, and recovery to ambient temperature within 50 s. The maximum working temperature of the as-prepared film is 115 °C, which is consistent with the result of the theoretical calculation, demonstrating a good electrothermal conversion capability. Finally, the heating application under extreme low temperature (-196 °C) was achieved. This conceptual study showed the promising value of the prototype strategy to the specific application areas such as the field of smart homes, flexible electronics, wearable thermal management, and high-performance heating systems.

8.
Micromachines (Basel) ; 12(6)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208518

RESUMO

In this paper, a gravity-triggered liquid metal microstrip patch antenna with reconfigurable frequency is proposed with experimental verification. In this work, the substrate of the antenna is quickly obtained through three-dimensional (3D) printing technology. Non-toxic EGaIn alloy is filled into the resin substrate as a radiation patch, and the NaOH solution is used to remove the oxide film of EGaIn. In this configuration, the liquid metal inside the antenna can be flexibly flowed and deformed with different rotation angles due to the gravity to realize different working states. To validate the conception, the reflection coefficients and radiation patterns of the prototyped antenna are then measured, from which it can be observed that the measured results closely follow the simulations. The antenna can obtain a wide operating bandwidth of 3.69-4.95 GHz, which coverage over a range of frequencies suitable for various channels of the 5th generation (5G) mobile networks. The principle of gravitational driving can be applied to the design of reconfigurable antennas for other types of liquid metals.

9.
ACS Appl Mater Interfaces ; 13(30): 36445-36454, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34309380

RESUMO

Hydrochromic visualization of a liquid interface shows vital potential applications in liquid displays, reversible writing, and acidic environmental detection, which offers a platform for detection and forewarning due to its intuitive and visual characteristics. Herein, we report a hydrochromic display due to the interfacial effect of liquid metal (LM)-triggered ammonium metatungstate (AMT) with instant dual-mode color switching. The double-electron-transfer reaction of the AMT on the surface of gallium-based LM caused the formation of heteropoly blue in the presence of acidic surroundings, resulting in a reversible color switching from being colorless to blue or blue to colorless. This visual interfacial discoloration phenomenon can be applied to the liquid display on diverse patterns of the LM surface. Furthermore, papers with a functional display were prepared, which can be used for writing up to eight times with dual-mode color switching. In addition, the reactive activity of acid triggering make it a potential candidate for use in visualizing an acidic environment with a detection range of pH = 1 to 0 (0.1-1.5 M). Briefly, this interfacial discoloration phenomenon enriches the interfacial engineering of LM and provides a unique prospective and wide-range platform for the application of LM.

10.
Sensors (Basel) ; 21(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807518

RESUMO

This communication provides an integrated process route of smelting gallium-based liquid metal (GBLM) in a high vacuum, and injecting GBLM into the antenna channel in high-pressure protective gas, which avoids the oxidation of GBLM during smelting and filling. Then, a frequency-reconfigurable antenna, utilizing the thermal expansion characteristic of GBLM, is proposed. To drive GBLM into an air-proof space, the thermal expansion characteristics of GBLM are required. The dimensions of the radiating element of the liquid metal antenna can be adjusted at different temperatures, resulting in the reconfigurability of the operating frequency. To validate the proposed concept, an L-band antenna prototype was fabricated and measured. Experimental results demonstrate that the GBLM in the antenna was well filled, and the GBLM was not oxidized. Due to the GBLM being in an air-proof channel, the designed liquid metal antenna without electrolytes could be used in an air environment for a long time. The antenna is able to achieve an effective bandwidth of over 1.25-2.00 GHz between 25 °C and 100 °C. The maximum radiation efficiency and gain in the tunable range are 94% and 2.9 dBi, respectively. The designed antenna also provides a new approach to the fabrication of a temperature sensor that detects temperature in some situations that are challenging for conventional temperature sensing technology.

11.
RSC Adv ; 9(60): 35102-35108, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-35530692

RESUMO

A one-step strategy for fabricating flexible conductors via phase separation is proposed, wherein, the liquid metal was implanted into polydimethylsiloxane, whose viscosity was changed using hexane. Such self-encapsulating composite exhibited good electronic and mechanical stability under mechanical cycles with no significant leaking of droplets during the testing process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...