Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(46): 42170-42180, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36440146

RESUMO

Cellulose can be dissolved in ionic liquids (ILs), and it can be recovered by adding antisolvent such as water or alcohol. In addition, the regenerated cellulose can be used for textiles, degradable membranes, hydrogels/aerogels, etc. However, the regenerated mechanism of cellulose remains ambiguous. In this work, density functional theory (DFT) calculation is reported for the cellulose regeneration from a cellulose/1-n-butyl-3-methylimidazolium acetate (BmimOAc)/water mixture. To investigate the microscopic effects of the antisolvents, we analyzed the structures and H-bonds of BmimOAc-nH2O and cellobiose-ILs-nH2O (n = 0-6) clusters. It can be found that when n ≥ 5 in the BmimOAc-nH2O clusters, the solvent-separated ion pairs (SIPs) play a dominant position in the system. With the increasing numbers of water molecules, the cation-anion interaction can be separated by water to reduce the effects of ILs on cellulose dissolution. Furthermore, the BmimOAc-nH2O and cellobiose-ILs (n = 0-6) clusters tend to be a more stable structure with high hydration in an aqueous solution. When the water molecules were added to the system, H-bonds can be formed among H2O, the hydroxyl of cellulose, and the oxygen of OAc. Therefore, the interactions between cellulose and ILs will be decreased to promote cellulose regeneration. This work would provide some help to understand the mechanism of cellulose regeneration from the view of theoretical calculation.

2.
RSC Adv ; 12(36): 23416-23426, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36090444

RESUMO

The Fischer-Helferich glycosidation reaction is generally the initial step in the conversion of glucose to levulinate in alcohol media. However, the relevant molecular mechanism catalyzed by Al-based catalysts is still not well understood. In this work, the reaction mechanism of the glycosidation from glucose to methyl glycosides catalyzed by Al3+ coordinated with methanol/methoxyl was investigated through density functional theory (DFT) calculations. The whole reaction process includes ring-opening, addition, and ring-closure events. The addition of methanol to the ring-opening structure of glucose makes the electronegativity of C1 site stronger to proceed with the following ring-closure reaction. Among the 28 kinds of ways of ring-closure reaction, the most preferred way is to close the loop through the six-membered ring (O5-C1) to generate methyl glucoside (MDGP). The rate-determining step is the ring-closure and the Al3+ shows a great catalytic effect which is mainly reflected in coordinating with the solvents to transfer protons. The results would be helpful to understanding the Fischer-Helferich glycosidation mechanism catalyzed by Al-based catalysts and comprehend the conversion of glucose to high value-added chemicals.

3.
Front Pharmacol ; 13: 940282, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016553

RESUMO

Berberine (BBR) is a plant derived quaternary benzylisoquinoline alkaloid, which has been widely used in traditional medicines for a long term. It possesses broad pharmacological effects and is widely applied in clinical. In recent years, the anti-tumor effects of BBR have attracted more and more attention of the researchers. The canonical right-handed double-stranded helical deoxyribonucleic acid (B-DNA) and its polymorphs occur under various environmental conditions and are involved in a plethora of genetic instability-related diseases especially tumor. BBR showed differential binding effects towards various polymorphic DNA structures. But its poor lipophilicity and fast metabolism limited its clinical utility. Structural modification of BBR is an effective approach to improve its DNA binding activity and bioavailability in vivo. A large number of studies dedicated to improving the binding affinities of BBR towards different DNA structures have been carried out and achieved tremendous advancements. In this article, the main achievements of BBR derivatives in polymorphic DNA structures binding researches in recent 20 years were reviewed. The structural modification strategy of BBR, the DNA binding effects of its derivatives, and the structure activity relationship (SAR) analysis have also been discussed.

4.
Front Chem ; 10: 940427, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003621

RESUMO

Cyclin-dependent kinase 1 (CDK1) plays an indispensable role in the whole cell cycle. It has become a new target for cancer therapy. According to the binding mode of a pan-CDK inhibitor, flavopiridol with CDK1, and our previous work, a new series of flavone derivatives were discovered. Among them, compound 2a showed the best CDK1 inhibitory and anti-proliferative potencies in the in vitro activity investigation. The IC50 of 2a against CDK1 was 36.42 ± 1.12 µM vs. 11.49 µM ± 0.56 of flavopiridol. In the anti-proliferation activity assays, 2a exhibited better activity toward RAW264.7 than MCF-7 cells. The results indicated that flavone derivatives, besides inhibiting the growth of tumor cells, can also antagonize inflammatory response. Molecular docking results showed that conformation of 2a can form hydrogen bonds and various hydrophobic interactions with the key amino acid residues of CDK1. It can be used as a promising lead compound for CDK1 inhibitor development.

5.
Virology ; 510: 99-103, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28715654

RESUMO

A novel Rhizobium radiobacter (synonym Agrobacterium tumefaciens)-mediated approach was developed to generate stable infectious clones of plant viruses. This method uses R. radiobacter for both cloning and inoculation of infectious clones, bypassing the requirement of cloning in E. coli to avoid the instability. Only three steps are included in this method: (i) construct viral genome-encoding plasmids in vitro by one-step Gibson assembly; (ii) transform the assembled DNA products into R. radiobacter; (iii) inoculate plants with the R. radiobacter clones containing the viral genome. Stable infectious clones were obtained from two potyviruses papaya ringspot virus (PRSV) and papaya leaf distortion mosaic virus (PLDMV) using this method, whereas attempts utilizing "classical" E. coli cloning system failed repeatedly. This method is simple and efficient, and is promising for a wide application in generation of infectious clones of plant virus, especially for those which are instable in E. coli.


Assuntos
Agrobacterium tumefaciens/genética , Clonagem Molecular , Potyvirus/genética , Genética Reversa , Virologia/métodos , Plantas/virologia , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...