Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 334: 138960, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37201607

RESUMO

Anthropogenic activities have caused environmental metal contamination in urban areas. Biomonitoring using organisms such as invertebrates can evaluate metal pollution, supplementing chemical monitoring, which cannot comprehensively reflect how metals influence organisms in the urban environment. To assess metal contamination in Guangzhou urban parks and its source, Asian tramp snails (Bradybaena similaris) were collected from ten parks in Guangzhou in 2021. The metal concentrations (Al, Cd, Cu, Fe, Mn, Pb, and Zn) were measured by ICP-AES and ICP-MS. We evaluated the metal distribution characteristics and correlations among metals. The probable sources of metals were determined by the positive matrix factorization (PMF) model. The metal pollution levels were analysed using the pollution index and the Nemerow comprehensive pollution index. The mean metal concentrations were ranked Al > Fe > Zn > Cu > Mn > Cd > Pb; metal pollution level in the snails was ranked Al > Mn > CuFe > Cd > Zn > Pb. Pb-Zn-Al-Fe-Mn and Cd-Cu-Zn were positively correlated in all samples. Six major metal sources were identified: an Al-Fe factor corresponding to crustal rock and dust, an Al factor related to Al-containing products, a Pb factor indicative of traffic and industries, a Cu-Zn-Cd factor dominated by the electroplating industry and vehicle sources, an Mn factor reflecting fossil fuel combustion, and a Cd-Zn factor related to agricultural product use. The pollution evaluation suggested heavy Al pollution, moderate Mn pollution, and light Cd, Cu, Fe, Pb, and Zn pollution in the snails. Dafushan Forest Park was heavily polluted; Chentian Garden and Huadu Lake National Wetland Park were not widely contaminated. The results indicated that B. similaris snails can be used as effective biomarkers for monitoring and evaluating environmental metal pollution in megacity urban areas. The findings show that snail biomonitoring provides a valuable understanding of the migration and accumulation pathways of anthropogenic metal pollutants in soil‒plant-snail food chains.


Assuntos
Metais Pesados , Poluentes do Solo , Animais , Metais Pesados/análise , Monitoramento Biológico , Cádmio/análise , Chumbo/análise , Parques Recreativos , Monitoramento Ambiental/métodos , Caramujos , Medição de Risco , China , Poluentes do Solo/análise
2.
Environ Pollut ; 265(Pt B): 114998, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32563808

RESUMO

Atmospheric heavy metal contamination is becoming a serious threat to environmental and human health in Chinese megacities. This study evaluated the concentrations of arsenic (As), cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) and Pb isotopic compositions in herbarium and native bryophytes collected from Guangzhou from 1932 to 2018. Relatively low mean metal concentrations were measured for bryophytes collected in the 1930s. The highest mean concentrations of Cd (0.72 ± 0.32 mg/kg), Cu (28.1 ± 9.8 mg/kg), Pb (125.9 ± 62.4 mg/kg) and Zn (273 ± 130 mg/kg) were found in the bryophytes from 1979 to 2000, following the commencement of the Reform and Opening-Up Program in 1978. The mean Pb concentrations (74.7 ± 6.3 mg/kg) decreased sharply from 2001 onwards, following the cessation of leaded petrol across the Chinese mainland in 2000. However, these values are still higher than those in 1950-1978, corresponding to a significant increase in atmospheric Pb emissions from coal combustion, nonferrous metal smelting and motor vehicle petrol consumption in China in the 2000s. The lead isotopic ratios of bryophyte archives (206Pb/207Pb 1.141-1.229, 208Pb/207Pb 2.376-2.482) indicate that lithogenic input and anthropogenic input arising from leaded petrol and industrial emissions have been the main sources of atmospheric heavy metal deposition in the city of Guangzhou over the past 85 years. Herbarium bryophyte can be utilised to reconstruct temporal and spatial shifts in atmospheric heavy metal deposition to better understand and manage the current air quality in Chinese megacities.


Assuntos
Metais Pesados/análise , Poluentes do Solo/análise , China , Cidades , Monitoramento Ambiental , Poluição Ambiental/análise , Humanos
3.
Huan Jing Ke Xue ; 29(12): 3496-502, 2008 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-19256391

RESUMO

One hundred and eighteen surface soil samples were collected from the Dongguan City, and analyzed for concentration of Cu, Zn, Ni, Cr, Pb, Cd, As, Hg, pH and OM. The spatial distribution and sources of soil heavy metals were studied using multivariate geostatistical methods and GIS technique. The results indicated concentrations of Cu, Zn, Ni, Pb, Cd and Hg were beyond the soil background content in Guangdong province, and especially concentrations of Pb, Cd and Hg were greatly beyond the content. The results of factor analysis group Cu, Zn, Ni, Cr and As in Factor 1, Pb and Hg in Factor 2 and Cd in Factor 3. The spatial maps based on geostatistical analysis show definite association of Factor 1 with the soil parent material, Factor 2 was mainly affected by industries. The spatial distribution of Factor 3 was attributed to anthropogenic influence.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Metais Pesados/análise , Poluentes do Solo/análise , Solo/análise , China , Monitoramento Ambiental , Sistemas de Informação Geográfica , Fenômenos Geológicos , Análise Multivariada
4.
Huan Jing Ke Xue ; 28(4): 805-12, 2007 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-17639942

RESUMO

Mining activities in the Dabaoshan area in the upper reach of the Hengshihe River have caused severe environmental changes, the waste water of milling and refining drained directly into the Hengshihe River, which contaminated the soils along the river severely. It is shown that Pb, Zn, Cd and Cu have contaminated the soil, the Cd contamination was more severe, and the contaminated level of Pb, Zn reached moderately to strongly polluted. The pH value of river and soil affected directly the heavy metals concentration of total and exchangeable ions, and presented negative pertinences. The levels of Pb, Zn, Cu and Cd in the surface soil of Shangbacun village in the lower reach of the river were found as high as 257.762, 350.235, 5.083 and 186.901 mg x kg(-1) respectively, which were relatively higher than those of the background values of soil 1.03, 1.75, 16.9 and 3.7 times respectively, and the result on the soil profiles showed that the contaminations have infiltrated into lower layer soil, ecological environment was harmed severely.


Assuntos
Metais Pesados/análise , Mineração , Poluentes do Solo/análise , Poluentes Químicos da Água/isolamento & purificação , Ácidos , Cádmio/análise , China , Monitoramento Ambiental , Chumbo/análise , Poluentes Químicos da Água/análise , Zinco/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...