Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Xray Sci Technol ; 32(3): 797-807, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38457139

RESUMO

BACKGROUND: The error magnitude is closely related to patient-specific dosimetry and plays an important role in evaluating the delivery of the radiotherapy plan in QA. No previous study has investigated the feasibility of deep learning to predict error magnitude. OBJECTIVE: The purpose of this study was to predict the error magnitude of different delivery error types in radiotherapy based on ResNet. METHODS: A total of 34 chest cancer plans (172 fields) of intensity-modulated radiation therapy (IMRT) from Eclipse were selected, of which 30 plans (151 fields) were used for model training and validation, and 4 plans including 21 fields were used for external testing. The collimator misalignment (COLL), monitor unit variation (MU), random multi-leaf collimator shift (MLCR), and systematic MLC shift (MLCS) were introduced. These dose distributions of portal dose predictions for the original plans were defined as the reference dose distribution (RDD), while those for the error-introduced plans were defined as the error-introduced dose distribution (EDD). Different inputs were used in the ResNet for predicting the error magnitude. RESULTS: In the test set, the accuracy of error type prediction based on the dose difference, gamma distribution, and RDD + EDD was 98.36%, 98.91%, and 100%, respectively; the root mean squared error (RMSE) was 1.45-1.54, 0.58-0.90, 0.32-0.36, and 0.15-0.24; the mean absolute error (MAE) was 1.06-1.18, 0.32-0.78, 0.25-0.27, and 0.11-0.18, respectively, for COLL, MU, MLCR and MLCS. CONCLUSIONS: In this study, error magnitude prediction models with dose difference, gamma distribution, and RDD + EDD are established based on ResNet. The accurate prediction of the error magnitude under different error types can provide reference for error analysis in patient-specific QA.


Assuntos
Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Radioterapia de Intensidade Modulada/normas , Garantia da Qualidade dos Cuidados de Saúde/normas , Garantia da Qualidade dos Cuidados de Saúde/métodos , Radiometria/métodos , Radiometria/normas , Aprendizado Profundo
2.
Artigo em Inglês | MEDLINE | ID: mdl-38319760

RESUMO

Unsupervised graph-structure learning (GSL) which aims to learn an effective graph structure applied to arbitrary downstream tasks by data itself without any labels' guidance, has recently received increasing attention in various real applications. Although several existing unsupervised GSL has achieved superior performance in different graph analytical tasks, how to utilize the popular graph masked autoencoder to sufficiently acquire effective supervision information from the data itself for improving the effectiveness of learned graph structure has been not effectively explored so far. To tackle the above issue, we present a multilevel contrastive graph masked autoencoder (MCGMAE) for unsupervised GSL. Specifically, we first introduce a graph masked autoencoder with the dual feature masking strategy to reconstruct the same input graph-structured data under the original structure generated by the data itself and learned graph-structure scenarios, respectively. And then, the inter-and intra-class contrastive loss is introduced to maximize the mutual information in feature and graph-structure reconstruction levels simultaneously. More importantly, the above inter-and intra-class contrastive loss is also applied to the graph encoder module for further strengthening their agreement at the feature-encoder level. In comparison to the existing unsupervised GSL, our proposed MCGMAE can effectively improve the training robustness of the unsupervised GSL via different-level supervision information from the data itself. Extensive experiments on three graph analytical tasks and eight datasets validate the effectiveness of the proposed MCGMAE.

3.
Strahlenther Onkol ; 199(5): 498-510, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36988665

RESUMO

OBJECTIVE: To identify delivery error type and predict associated error magnitude by image-based features using machine learning (ML). METHODS: In this study, a total of 40 thoracic plans (including 208 beams) were selected, and four error types with different magnitudes were introduced into the original plans, including 1) collimator misalignment (COLL), 2) monitor unit (MU) variation, 3) systematic multileaf collimator misalignment (MLCS), and 4) random MLC misalignment (MLCR). These dose distributions of portal dose predictions for the original plans were defined as the reference dose distributions (RDD), while those for the error-introduced plans were defined as the error-introduced dose distributions (EDD). Both distributions were calculated for all beams with portal dose image prediction (PDIP). Besides, 14 image-based features were extracted from RDD and EDD of portal dose predictions to obtain the feature vectors. In addition, a random forest was adopted for the multiclass classification task, and regression prediction for error magnitude. RESULTS: The top five features extracted with the highest weight included 1) the relative displacement in the x direction, 2) the ratio of the absolute minimum residual error to the maximal RDD value, 3) the product of the maximum and minimum residuals, 4) the ratio of the absolute maximum residual error to the maximal RDD value, and 5) the ratio of the absolute mean residual value to the maximal RDD value. The relative displacement in the x direction had the highest weight. The overall accuracy of the five-class classification model was 99.85% for the validation set and 99.30% for the testing set. This model could be applied to the classification of the error-free plan, COLL, MU, MLCS, and MLCR with an accuracy of 100%, 98.4%, 99.9%, 98.0%, and 98.3%, respectively. MLCR had the worst performance in error magnitude prediction (70.1-96.6%), while others had better performance in error magnitude prediction (higher than 93%). In the error magnitude prediction, the mean absolute error (MAE) between predicted error magnitude and actual error ranged from 0.03 to 0.33, with the root mean squared error (RMSE) varying from 0.17 to 0.56 for the validation set. The MAE and RMSE ranged from 0.03 to 0.50 and 0.44 to 0.59 for the test set, respectively. CONCLUSION: It could be demonstrated in this study that the image-based features extracted from RDD and EDD can be employed to identify different types of delivery errors and accurately predict error magnitude with the assistance of ML techniques. They can be used to associate traditional gamma analysis with clinically based analysis for error classification and magnitude prediction in patient-specific IMRT quality assurance.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Aprendizado de Máquina , Dosagem Radioterapêutica
4.
IEEE Trans Neural Netw Learn Syst ; 34(10): 7541-7554, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35120009

RESUMO

Recent weakly supervised semantic segmentation methods generate pseudolabels to recover the lost position information in weak labels for training the segmentation network. Unfortunately, those pseudolabels often contain mislabeled regions and inaccurate boundaries due to the incomplete recovery of position information. It turns out that the result of semantic segmentation becomes determinate to a certain degree. In this article, we decompose the position information into two components: high-level semantic information and low-level physical information, and develop a componentwise approach to recover each component independently. Specifically, we propose a simple yet effective pseudolabels updating mechanism to iteratively correct mislabeled regions inside objects to precisely refine high-level semantic information. To reconstruct low-level physical information, we utilize a customized superpixel-based random walk mechanism to trim the boundaries. Finally, we design a novel network architecture, namely, a dual-feedback network (DFN), to integrate the two mechanisms into a unified model. Experiments on benchmark datasets show that DFN outperforms the existing state-of-the-art methods in terms of intersection-over-union (mIoU).

5.
Technol Cancer Res Treat ; 21: 15330338221104881, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35726209

RESUMO

Objectives: In this study, we propose a deep learning-based approach to predict Intensity-modulated radiation therapy (IMRT) quality assurance (QA) gamma passing rates using delivery fluence informed by log files. Methods: A total of 112 IMRT plans for chest cancers were planned and measured by portal dosimetry equipped on TrueBeam linac. The convolutional neural network (CNN) based learning model was trained using delivery fluence as inputs and gamma passing rates (GPRs) of 4 different criteria (3%/3 mm, 2%/3 mm, 3%/2 mm, and 2%/2 mm) as outputs. Model performance for both validation and test sets was assessed using mean absolute error (MAE), mean squared error (MSE), root MSE (RMSE), Spearman rank correlation coefficients (Sr), and Determination coefficient (R2) between the measured and predicted GPR values. Results: In the test set, the MAE of the prediction model were 0.402, 0.511, 1.724, and 2.530, the MSE were 0.640, 0.986, 6.654, and 9.508, the RMSE were 0.800, 0.993, 2.580, and 3.083, the Sr were 0.643, 0.684, 0.821, and 0.824 (P < .001) and the R2 were 0.4110, 0.4666, 0.6677, and 0.6769 for 3%/3 mm, 3%/2 mm, 2%/3 mm, and 2%/2 mm, respectively. The MAE and RMSE of the prediction model decreased with stricter gamma criteria while the Sr and R2 between measured and predicted GPR values increased. Conclusions: The CNN prediction model based on delivery fluence informed by log files could accurately predict IMRT QA passing rates for different gamma criteria. It could reduce QA workload and improve efficiency in pretreatment QA. Our results suggest that the CNN prediction model based on delivery fluence informed by log files may be a promising tool for the gamma evaluation of IMRT QA.


Assuntos
Aprendizado Profundo , Radioterapia de Intensidade Modulada , Humanos , Aceleradores de Partículas , Garantia da Qualidade dos Cuidados de Saúde , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos
6.
Front Oncol ; 11: 700343, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34354949

RESUMO

The dose verification in radiotherapy quality assurance (QA) is time-consuming and places a heavy workload on medical physicists. To provide a clinical tool to perform patient specific QA accurately, the UNet++ is investigated to classify failed or pass fields (the GPR lower than 85% is considered "failed" while the GPR higher than 85% is considered "pass"), predict gamma passing rates (GPR) for different gamma criteria, and predict dose difference from virtual patient-specific quality assurance in radiotherapy. UNet++ was trained and validated with 473 fields and tested with 95 fields. All plans used Portal Dosimetry for dose verification pre-treatment. Planar dose distribution of each field was used as the input for UNet++, with QA classification results, gamma passing rates of different gamma criteria, and dose difference were used as the output. In the test set, the accuracy of the classification model was 95.79%. The mean absolute error (MAE) were 0.82, 0.88, 2.11, 2.52, and the root mean squared error (RMSE) were 1.38, 1.57, 3.33, 3.72 for 3%/3mm, 3%/2 mm, 2%/3 mm, 2%/2 mm, respectively. The trend and position of the predicted dose difference were consistent with the measured dose difference. In conclusion, the Virtual QA based on UNet++ can be used to classify the field passed or not, predict gamma pass rate for different gamma criteria, and predict dose difference. The results show that UNet++ based Virtual QA is promising in quality assurance for radiotherapy.

7.
Rev Sci Instrum ; 87(1): 015111, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26827357

RESUMO

Mechanical characterization of micro-scale components under complex loading conditions is a great challenge. To meet such a challenge, a microtension-torsional fatigue testing apparatus is developed in this study that specializes in the evaluation of multiaxial fatigue behavior of thin stent wires. The actuation and measurement in two controlled directions are incorporated in the tensile and torsional load frames, respectively, and a thrust air bearing is applied for the coupling of the two frames. The axial deformation of specimens measured by a grating sensor built in the linear motor and by a non-contact displacement detect system is compared and corrected. The accuracy of the torque measurement is proved by torsion tests on thin wires of 316L stainless steel in nominal diameters of 100 µm. Multistep torsion test, multiaxial ratcheting test, and a fully strain controlled multiaxial cyclic test are performed on 100 µm and 200 µm-diameter 316L wires using this apparatus. The capability of the equipment in tension-torsional cyclic tests for micro-scale specimens is demonstrated by the experimental results.

8.
J Mater Sci Mater Med ; 23(3): 697-710, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22311074

RESUMO

A hydrogel which will undergo macroscopic transition responding to redox stimuli is prepared. Mercapto precursors are prepared from 4-armed polyethylene glycol and after deprotection of thiolate anions, they can transform into disulfide crosslinked hydrogels within 3 min by responding to oxidant H(2)O(2). Desirable elasticity is exhibited with a wide range of storage modulus from 50 Pa to 14 kPa through rheological investigation. In addition, the hydrogels are found to be hydrolytically stable but degrade within 75 days when exposed to reductant such as glutathione (GSH). So gelation time and degradation behavior can be regulated by concentrations of precursor, oxidant, reductant, temperature, and pH value. Notably, interest arises from the long-period degradation under low GSH concentration of 0.01 mM that is similar to extracellular level, but not the fast disintegration under high concentration intracellular, providing the possibility of "smart" degradation responding to those cell-secreted biomacromolecules during the process of tissue regeneration. Furthermore, both hydrogels and their degradation products show cell viability above 90% culturing with C2C12 cells, representing nontoxic properties. Such a stimuli-responsive degradation strategy will give promising application in tissue repair and regeneration; especially enable the achievement of matching the degradation kinetics with physiological environment.


Assuntos
Hidrogéis , Polietilenoglicóis/química , Animais , Linhagem Celular , Espectroscopia de Ressonância Magnética , Camundongos , Oxirredução , Reologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...