Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 27(1): 607-621, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31808079

RESUMO

Soil erosion is sensitive to climate change, especially in high mountain areas. The Tibetan Plateau has experienced dramatic land surface environment changes under the impact of climate change during the last decades. In this study, we focused on the mid-Yarlung Tsangpo River (MYZ River) located in the southern part of the Tibetan Plateau. The revised universal soil loss equation (RUSLE) was applied to assess soil erosion risk. To increase its applicability to high mountain areas with longer periods of snowfall, snowmelt runoff erosivity was considered in addition to rainfall erosivity. Results revealed that soil erosion of the MYZ River region was of a moderate grade with an average soil erosion rate of 29.1 t ha-1 year-1 and most serious erosion in wet and cold years. Soil erosion rate in the MYZ River region showed a decreasing trend of - 1.14% year-1 due to the precipitation, temperature, and vegetation changes from 2001 to 2015, with decreasing precipitation being the most important factor. Increasing precipitation and temperature would lead to increasing soil erosion risk in ~ 2050 based on the Coupled Model Intercomparison Project (CMIP5) and RUSLE models. It is clear that soil erosion in high mountain areas greatly depends on climate state and attentions should be paid to address soil erosion problem in the future.


Assuntos
Mudança Climática , Monitoramento Ambiental , Fenômenos Geológicos , Solo , Rios/química , Temperatura
2.
Sci Total Environ ; 667: 271-286, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30831367

RESUMO

General circulation models (GCMs) are useful tools for investigating mechanisms of climate change and projecting future climate change scenarios, but have large uncertainties and biases. Accurate models are of significant importance for agriculture, water resources management, hydrological simulation, and species distribution. In this study, we examined the precipitation and temperature reproducibility of 34 GCMs during the period from 1961 to 1999 over arid and semiarid regions of China. The study area was divided into eight sub-regions; each represented a specific topography. The evaluation was conducted for the whole study area and the sub-regions. Spatial and temporal indices and weighting methodology were used to comprehensively illustrate the models' reproducibility. The results showed that the simulation ability during winter outperformed than that during summer (the weight was 0.192 higher for precipitation and 0.044 higher for temperature during winter than that during summer over the whole study area). Precipitation was more accurately simulated during spring than during autumn as opposed to temperature (the weight was 0.124 higher during spring than during autumn for precipitation and 0.1 higher during autumn than during spring for temperature for the whole region). For precipitation, the simulation ability in the basins was the best, followed by plateaus and mountains; the weights were 0.462, 0.308, and 0.231, respectively. For temperature, the mountains and plateaus had the best and poorest reproducibility, at weights of 0.446 and 0.198, respectively. The top models for precipitation and temperature at different spatial scales (whole study area, three topography types, eight sub-regions) were recommended. The results served as a reference for model selection in future studies regarding impacts of climate change on eco-hydrology.

3.
Environ Monit Assess ; 190(9): 504, 2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-30088154

RESUMO

Soil and water conservation (SWC) measures can be adopted to conserve soil and water and improve soil fertility. The degree to which SWC measures improve soil fertility is affected by the type of SWC measure, soil type, climate, etc. The purpose of this study was to study the effect of the main SWC measures implemented in the Beijing mountain area on soil fertility. Six runoff plots, including a fish pit (fallow) (FPF), fish pit (Platycladus orientalis L. Franco) (FPP), narrow terrace (fallow) (NTF), narrow terrace (Juglans regia L.) (NTJ), tree pan (Juglans regia L.) (TPJ), and fallow land (FL), were established to analyze the differences in soil fertility in the Beijing mountain area. Soil samples were collected in 2005 and 2015 from the six runoff plots. Soil particle size; soil total nitrogen (TN), total phosphorous (TP), total potassium (TK), alkali-hydrolysable nitrogen (Ah-N), available P (Av-P), and available K (Av-K); and soil organic matter (SOM) were measured. The soil integrated fertility index (IFI) was calculated. The results showed that the soil nutrient content and IFI significantly decreased from 2005 to 2015 in the FL plot and significantly increased in the five runoff plots with SWC measures. Compared to the other runoff plots with SWC measures, the FPP plot more significantly improved the soil nutrient content and IFI. The TN, Ah-N, Av-K, SOM, and IFI in the FPP plots increased by 98%, 113%, 61%, 69 and 47%, respectively, from 2005 to 2015. The IFI for the FPP, NTJ, and TPJ exceeded the average IFI of the farmland soil in the study region. The results indicated that the combination of engineering practices and vegetative measures effectively improved soil fertility. These results may be helpful for selecting SWC measures, land-use planning and monitoring and assessing soil fertility.


Assuntos
Conservação dos Recursos Hídricos/métodos , Solo/química , Abastecimento de Água/estatística & dados numéricos , Pequim , China , Monitoramento Ambiental/métodos , Nitrogênio/análise , Fósforo/análise , Árvores , Água
4.
Adv Exp Med Biol ; 801: 401-5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24664724

RESUMO

Müller cells are major macroglia and play many essential roles as a supporting cell in the retina. As Müller cells only constitute a small portion of retinal cells, investigating the role of Müller glia in retinal biology and diseases is particularly challenging. To overcome this problem, we first generated a Cre/lox-based conditional gene targeting system that permits the genetic manipulation and functional dissection of gene of interests in Müller cells. To investigate diabetes-induced alteration of Müller cells, we recently adopted methods to analyze Müller cells survival/death in vitro and in vivo. We also used normal and genetically altered primary cell cultures to reveal the mechanistic insights for Müller cells in biological and disease processes. In this article, we will discuss the applications and limitations of these methodologies, which may be useful for research in retinal Müller cell biology and pathophysiology.


Assuntos
Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Células Ependimogliais/patologia , Animais , Apoptose/fisiologia , Modelos Animais de Doenças , Humanos , Integrases/genética , Camundongos , Mutagênese , Cultura Primária de Células/métodos
5.
Environ Monit Assess ; 186(2): 971-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24043607

RESUMO

Enrichment ratio (ER) is widely used in nonpoint source pollution models to estimate the nutrient loss associated with soil erosion. The objective of this study was to determine the ER of total nitrogen (ERN) in the sediments eroded from the typical soils with varying soil textures in Beijing mountain area. Each of the four soils was packed into a 40 by 30 by 15 cm soil pan and received 40-min simulated rainfalls at the intensity of 90 mm h(-1) on five slopes. ERN for most sediments were above unity, indicating the common occurrence of nitrogen enrichment accompanied with soil erosion in Beijing mountain area. Soil texture was not the only factor that influenced N enrichment in this experiment since the ERN for the two fine-textured soils were not always lower. Soil properties such as soil structure might exert a more important influence in some circumstances. The selective erosion of clay particles was the main reason for N enrichment, as implied by the significant positive correlation between the ER of total nitrogen and clay fraction in eroded sediments. Significant regression equations between ERN and sediment yield were obtained for two pairs of soils, which were artificially categorized by soil texture. The one for fine-textured soils had greater intercept and more negative slope. Thus, the initially higher ERN would be lower than that for the other two soils with coarser texture once the sediment yield exceeded 629 kg ha(-1).


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos/química , Nitrogênio/análise , Poluentes do Solo/análise , Solo/química , China , Chuva , Solo/classificação , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...