Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(13): 22127-22143, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37381294

RESUMO

A new method to improve the integration level of an on-chip diffractive optical neural network (DONN) is proposed based on a standard silicon-on-insulator (SOI) platform. The metaline, which represents a hidden layer in the integrated on-chip DONN, is composed of subwavelength silica slots, providing a large computation capacity. However, the physical propagation process of light in the subwavelength metalinses generally requires an approximate characterization using slot groups and extra length between adjacent layers, which limits further improvements of the integration of on-chip DONN. In this work, a deep mapping regression model (DMRM) is proposed to characterize the process of light propagation in the metalines. This method improves the integration level of on-chip DONN to over 60,000 and elimnates the need for approximate conditions. Based on this theory, a compact-DONN (C-DONN) is exploited and benchmarked on the Iris plants dataset to verify the performance, yielding a testing accuracy of 93.3%. This method provides a potential solution for future large-scale on-chip integration.

2.
Nat Commun ; 14(1): 70, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604423

RESUMO

Machine learning technologies have been extensively applied in high-performance information-processing fields. However, the computation rate of existing hardware is severely circumscribed by conventional Von Neumann architecture. Photonic approaches have demonstrated extraordinary potential for executing deep learning processes that involve complex calculations. In this work, an on-chip diffractive optical neural network (DONN) based on a silicon-on-insulator platform is proposed to perform machine learning tasks with high integration and low power consumption characteristics. To validate the proposed DONN, we fabricated 1-hidden-layer and 3-hidden-layer on-chip DONNs with footprints of 0.15 mm2 and 0.3 mm2 and experimentally verified their performance on the classification task of the Iris plants dataset, yielding accuracies of 86.7% and 90%, respectively. Furthermore, a 3-hidden-layer on-chip DONN is fabricated to classify the Modified National Institute of Standards and Technology handwritten digit images. The proposed passive on-chip DONN provides a potential solution for accelerating future artificial intelligence hardware with enhanced performance.

3.
Opt Express ; 29(20): 31924-31940, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34615274

RESUMO

An integrated physical diffractive optical neural network (DONN) is proposed based on a standard silicon-on-insulator (SOI) substrate. This DONN has compact structure and can realize the function of machine learning with whole-passive fully-optical manners. The DONN structure is designed by the spatial domain electromagnetic propagation model, and the approximate process of the neuron value mapping is optimized well to guarantee the consistence between the pre-trained neuron value and the SOI integration implementation. This model can better ensure the manufacturability and the scale of the on-chip neural network, which can be used to guide the design and manufacturing of the real chip. The performance of our DONN is numerically demonstrated on the prototypical machine learning task of prediction of coronary heart disease from the UCI Heart Disease Dataset, and accuracy comparable to the state-of-the-art is achieved.


Assuntos
Campos Eletromagnéticos , Redes Neurais de Computação , Óptica e Fotônica/métodos , Doença das Coronárias/diagnóstico , Aprendizado Profundo , Humanos , Aprendizado de Máquina , Treinamento por Simulação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...