Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6851, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891176

RESUMO

Dual-interfacial structure within catalysts is capable of mitigating the detrimentally completive adsorption during the catalysis process, but its construction strategy and mechanism understanding remain vastly lacking. Here, a highly active dual-interfaces of CeO2-x/CoO1-x/Co is constructed using the pronounced interfacial interaction from surrounding small CeO2-x islets, which shows high activity in catalyzing the water-gas shift reaction. Kinetic evidence and in-situ characterization results revealed that CeO2-x modulates the oxidized state of Co species and consequently generates the dual active CeO2-x/CoO1-x/Co interface during the WGS reaction. A synergistic redox mechanism comprised of independent contribution from dual functional interfaces, including CeO2-x/CoO1-x and CoO1-x/Co, is authenticated by experimental and theoretical results, where the CeO2-x/CoO1-x interface alleviates the CO poison effect, and the CoO1-x/Co interface promotes the H2 formation. The results may provide guidance for fabricating dual-interfacial structures within catalysts and shed light on the mechanism over multi-component catalyst systems.

2.
J Am Chem Soc ; 145(4): 2252-2263, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36657461

RESUMO

It is highly desirable to fabricate an accessible catalyst surface that can efficiently activate reactants and desorb products to promote the local surface reaction equilibrium in heterogeneous catalysis. Herein, rare-earth oxycarbonates (Ln2O2CO3, where Ln = La and Sm), which have molecular-exchangeable (H2O and CO2) surface structures according to the ordered layered arrangement of Ln2O22+ and CO32- ions, are unearthed. On this basis, a series of Ln2O2CO3-supported Cu catalysts are prepared through the deposition precipitation method, which provides excellent catalytic activity and stability for the water-gas shift (WGS) reaction. Density functional theory calculations combined with systematic experimental characterizations verify that H2O spontaneously dissociates on the surface of Ln2O2CO3 to form hydroxyl by eliminating the carbonate through the release of CO2. This interchange efficiently promotes the WGS reaction equilibrium shift on the local surface and prevents the carbonate accumulation from hindering the active sites. The discovery of the unique layered structure provides a so-called "self-cleaning" active surface for the WGS reaction and opens new perspectives about the application of rare-earth oxycarbonate nanomaterials in C1 chemistry.

3.
ChemSusChem ; 14(18): 3806-3809, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34263532

RESUMO

A new practical method for construction of 3D porous carbon was developed through molecular design via one-step synthesis from commercially available carbon tetrabromide and bis(trimethylsilyl)acetylene on a gram-scale, and the obtained porous carbon has a well-defined sp1 -sp3 all-carbon structure (C13 ), high stability, and high surface area.

4.
Nanoscale ; 13(19): 8931-8939, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33956009

RESUMO

Production of formate via CO2/bicarbonate hydrogenation using cheap metal-based heterogeneous catalysts is attractive. Herein, we report the organometallic synthesis of a foam-like Ni@Ni(OH)2 composite nanomaterial which exhibited remarkable air stability and over 2 times higher catalytic activity than commercial RANEY® Ni catalyst in formate synthesis. Formate generation was achieved with an optimal rate of 6.0 mmol gcat-1 h-1 at 100 °C, a significantly lower operation temperature compared to the 200-260 °C reported in the literature. Deep characterization evidenced that this nanomaterial was made of an amorphous Ni(OH)2 phase covering metallic Ni sites; a core-shell structure which is crucial for the stability of the catalyst. The adsorption of bicarbonates onto the Ni@Ni(OH)2 catalyst was found to be a kinetically relevant step in the reaction, and the Ni-Ni(OH)2 interface was found to be beneficial for both CO2 and H2 activation thanks to a cooperative effect. Our findings emphasize the underestimated potential of Ni-based catalysts in CO2 hydrogenation to formate, indicating a viable strategy to develop stable, cheap metal catalysts for greener catalytic applications.

5.
Inorg Chem ; 60(7): 5183-5189, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33761745

RESUMO

A facile spray pyrolysis method is introduced to construct the hollow CeO2-Al2O3 spheres with atomically dispersed Fe. Only nitrates and ethanol were involved during the one-step preparation process using the ultrasound spray pyrolysis approach. Detailed explorations demonstrated that differences in the pyrolysis temperature of the precursors and heat transfer are crucial to the formation of the hollow nanostructure. In addition, iron species were in situ atomically dispersed on the as-formed CeO2-Al2O3 hollow spheres via this strategy, which demonstrated promising potential in transferring syn-gas to valuable gasoline products.

6.
J Am Chem Soc ; 142(31): 13362-13371, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32658462

RESUMO

Apart from active metals, supports also contribute significantly to the catalytic performance of supported metal catalysts. On account of the formed strain and defects, the heterostructured surface of the support may play a crucial role to activate the reactant molecules, while it is usually neglected. In this work, the Pt/γ-Mo2N catalyst was prepared via a facile solution method. This Pt/γ-Mo2N catalyst showed excellent activity and stability for catalyzing the water-gas shift (WGS) reaction. The reaction rates at 240 °C were 16.5 molCO molPt-1s-1 in product-free gas and 5.36 molCO molPt-1 s-1 in full reformate gas, which were almost 20 times that of the catalysts reported. It is found that the molybdenum species in the surface of the Pt/γ-Mo2N catalyst is molybdenum oxide as MoO3. This surface MoO3 is very easily reduced even at room temperature, and it transformed into highly distorted MoOx (2 < x < 3) in the WGS reaction. The MoOx on the catalyst surface greatly enhanced the capability of generating active oxygen vacancies to dissociate H2O molecules, which induced unexpectedly superior catalytic performance. Therefore, the intrinsically active surface in the Pt/γ-Mo2N catalyst for the WGS reaction was molybdenum oxide as MoOx (2 < x < 3).

7.
J Am Chem Soc ; 141(44): 17548-17557, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31607122

RESUMO

The construction of stable active site in nanocatalysts is of great importance but is a challenge in heterogeneous catalysis. Unexpectedly, coordination-unsaturated and atomically dispersed copper species were constructed and stabilized in a sintered copper-ceria catalyst through air-calcination at 800 °C. This sintered copper-ceria catalyst showed a very high activity for CO oxidation with a CO consumption rate of 6100 µmolCO·gCu-1·s-1 at 120 °C, which was at least 20 times that of other reported copper catalysts. Additionally, the excellent long-term stability was unbroken under the harsh cycled reaction conditions. Based on a comprehensive structural characterization and mechanistic study, the copper atoms with unsaturated coordination in the form of Cu1O3 were identified to be the sole active site, at which both CO and O2 molecules were activated, thus inducing remarkable CO oxidation activity with a very low copper loading (1 wt %).

8.
J Am Chem Soc ; 141(11): 4613-4623, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30807152

RESUMO

The crucial role of the metal-oxide interface in the catalysts of the water-gas shift (WGS) reaction has been recognized, while the precise illustration of the intrinsic reaction at the interfacial site has scarcely been presented. Here, two kinds of gold-ceria catalysts with totally distinct gold species, <2 nm clusters and 3 to 4 nm particles, were synthesized as catalysts for the WGS reaction. We found that the gold cluster catalyst exhibited a superiority in reactivity compared to gold nanoparticles. With the aid of comprehensive in situ characterization techniques, the bridged -OH groups that formed on the surface oxygen vacancies of the ceria support are directly determined to be the sole active configuration among various surface hydroxyls in the gold-ceria catalysts. The isotopic tracing results further proved that the reaction between bridged surface -OH groups and CO molecules adsorbed on interfacial Au atoms contributes dominantly to the WGS reactivity. Thus, the abundant interfacial sites in gold clusters on the ceria surface induced superior reactivity compared to that of supported gold nanoparticles in catalyzing the WGS reaction. On the basis of direct and solid experimental evidence, we have obtained a very clear image of the surface reaction for the WGS reaction catalyzed by the gold-ceria catalyst.

9.
ACS Appl Mater Interfaces ; 10(40): 34172-34183, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30205674

RESUMO

Exploring the state-of-the-art heterogeneous catalysts has been a general concern for sustainable and clean energy. Here, Pt-embedded CuO x-CeO2 multicore-shell (Pt/CuO x-CeO2 MS) composites are fabricated at room temperature via a one-pot and template-free procedure for catalyzing CO oxidation, a classical probe reaction, showing a volcano-shaped relationship between the composition and catalytic activity. We experimentally unravel that the Pt/CuO x-CeO2 MS composites are derived from an interfacial autoredox process, where Pt nanoparticles (NPs) are in situ encapsulated by self-assembled ceria nanospheres with CuO x clusters adhered through deposition/precipitation-calcination process. Only Cu-O and Pt-Pt coordination structures are determined for CuO x clusters and Pt NPs in Pt/CuO x-CeO2 MS, respectively. Importantly, the close vicinity between Pt and CeO2 benefits to more oxygen vacancies in CeO2 counterparts and results in thin oxide layers on Pt NPs. Meanwhile, the introduction of CuO x clusters is crucial for triggering synergistic catalysis, which leads to high resistance to aggregation of Pt NPs and improvement of catalytic performance. In CO oxidation reaction, both Ptδ+-CO and Cu+-CO can act as active sites during CO adsorption and activation. Nonetheless, redundant content of Pt or Cu will induce a strongly bound Pt-O-Ce or Cu-[O x]-Ce structures in air-calcinated Pt/CuO x-CeO2 MS composites, respectively, which are both deleterious to catalytic reactivity. As a result, the composition-dependent catalytic activity and superior durability of Pt/CuO x-CeO2 MS composites toward CO oxidation reaction are achieved. This work should be instructive for fabricating desirable multicomponent catalysts composed of noble metal and bimetallic oxide composites for diverse heterogeneous catalysis.

10.
Nat Commun ; 7: 13481, 2016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27848964

RESUMO

Small-size (<5 nm) gold nanostructures supported on reducible metal oxides have been widely investigated because of the unique catalytic properties they exhibit in diverse redox reactions. However, arguments about the nature of the gold active site have continued for two decades, due to the lack of comparable catalyst systems with specific gold species, as well as the scarcity of direct experimental evidence for the reaction mechanism under realistic working conditions. Here we report the determination of the contribution of single atoms, clusters and particles to the oxidation of carbon monoxide at room temperature, by the aid of in situ X-ray absorption fine structure analysis and in situ diffuse reflectance infrared Fourier transform spectroscopy. We find that the metallic gold component in clusters or particles plays a much more critical role as the active site than the cationic single-atom gold species for the room-temperature carbon monoxide oxidation reaction.

11.
Angew Chem Int Ed Engl ; 55(34): 9902-7, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27445106

RESUMO

Zn- and Na-modulated Fe catalysts were fabricated by a simple coprecipitation/washing method. Zn greatly changed the size of iron species, serving as the structural promoter, while the existence of Na on the surface of the Fe catalyst alters the electronic structure, making the catalyst very active for CO activation. Most importantly, the electronic structure of the catalyst surface suppresses the hydrogenation of double bonds and promotes desorption of products, which renders the catalyst unexpectedly reactive toward alkenes-especially C5+ alkenes (with more than 50% selectivity in hydrocarbons)-while lowering the selectivity for undesired products. This study enriches C1 chemistry and the design of highly selective new catalysts for high-value chemicals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...