Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 274(Pt 1): 133137, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901508

RESUMO

Polygonatum sibiricum polysaccharides (PSP), the primary constituent of Polygonatum sibiricum, have been shown to exhibit a wide range of pharmacological effects, but their impact on osteoarthritis (OA) remains unclear. The objective of this study was to investigate the protective effects of PSP against OA and to elucidate its underlying molecular mechanism. In our in vitro experiments, PSP not only inhibited the IL-1ß-induced inflammatory responses and the nuclear factor kappa-B (NF-κB) signaling pathway in chondrocytes but also regulated the cartilage matrix metabolism. In addition, we detected 394 significantly differentially expressed genes through RNA-seq analysis on PSP-intervened chondrocytes, and the toll-like receptor 2 (TLR2) was identified as the most important feature by functional network analysis and qRT-PCR. It was also revealed that PSP treatment significantly reversed the IL-1-induced up-regulation of TLR2 expression in chondrocytes, while TLR2 overexpression partially inhibited the regulatory effects of PSP on inflammation, NF-κB signaling pathway and matrix metabolism. In our in vivo experiments, PSP treatment alleviated the development of destabilization of medial meniscus (DMM)-induced OA in mouse knee joints, inhibited the DMM-induced activation of the TLR2/NF-κB signaling pathway in mouse knee joint cartilage, and reduced the serum levels of inflammatory cytokines. In conclusion, PSP exerts its anti-inflammatory, matrix synthesis-promoting and matrix catabolism-suppressing effects in knee OA by inhibiting the TLR2/NF-κB signaling pathway, suggesting that PSP may be potentially targeted as a novel all-natural, low-toxicity drug for OA prevention and treatment.

2.
J Exp Clin Cancer Res ; 43(1): 149, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38778379

RESUMO

BACKGROUND: Prostate cancer (PCa) incidence and mortality rates are rising. Our previous research has shown that the combination of icariin (ICA) and curcumol (CUR) induced autophagy and ferroptosis in PCa cells, and altered lipid metabolism. We aimed to further explore the effects of the combination of ICA and CUR on gut microbiota, metabolism, and immunity in PCa. METHODS: A mouse subcutaneous RM-1 cell tumor model was established. 16 S rRNA sequencing was performed to detect changes in fecal gut microbiota. SCFAs in mouse feces, and the effect of ICA-CUR on T-cell immunity, IGFBP2, and DNMT1 were examined. Fecal microbiota transplantation (FMT) was conducted to explore the mechanism of ICA-CUR. Si-IGFBP2 and si/oe-DNMT1 were transfected into RM-1 and DU145 cells, and the cells were treated with ICA-CUR to investigate the mechanism of ICA-CUR on PCa development. RESULTS: After treatment with ICA-CUR, there was a decrease in tumor volume and weight, accompanied by changes in gut microbiota. ICA-CUR affected SCFAs and DNMT1/IGFBP2/EGFR/STAT3/PD-L1 pathway. ICA-CUR increased the positive rates of CD3+CD8+IFN-γ, CD3+CD8+Ki67 cells, and the levels of IFN-γ and IFN-α in the serum. After FMT (with donors from the ICA-CUR group), tumor volume and weight were decreased. SCFAs promote tumor development and the expression of IGFBP2. In vitro, DNMT1/IGFBP2 promotes cell migration and proliferation. ICA-CUR inhibits the expression of DNMT1/IGFBP2. CONCLUSIONS: ICA-CUR mediates the interaction between gut microbiota and the DNMT1/IGFBP2 axis to inhibit the progression of PCa by regulating immune response and metabolism, suggesting a potential therapeutic strategy for PCa.


Assuntos
Linfócitos T CD8-Positivos , DNA (Citosina-5-)-Metiltransferase 1 , Microbioma Gastrointestinal , Neoplasias da Próstata , Animais , Camundongos , Masculino , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Humanos , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Modelos Animais de Doenças
3.
Sci Rep ; 14(1): 4465, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396011

RESUMO

The main objective of this study is to evaluate the influence of exosomes derived from endothelial progenitor cells (EPC-Exo) on neointimal formation induced by balloon injury in rats. Furthermore, the study aims to investigate the potential of EPC-Exo to promote proliferation, migration, and anti-apoptotic effects of vascular endothelial cells (VECs) in vitro. The underlying mechanisms responsible for these observed effects will also be thoroughly explored and analyzed. Endothelial progenitor cells (EPCs) was isolated aseptically from Sprague-Dawley (SD) rats and cultured in complete medium. The cells were then identified using immunofluorescence and flow cytometry. The EPC-Exo were isolated and confirmed the identities by western-blot, transmission electron microscope, and nanoparticle analysis. The effects of EPC-Exo on the rat carotid artery balloon injury (BI) were detected by hematoxylin and eosin (H&E) staining, ELISA, immunohistochemistry, immunofluorescence, western-blot and qPCR. LPS was used to establish an oxidative damage model of VECs. The mechanism of EPC-Exo repairing injured vascular endothelial cells was detected by measuring the proliferation, migration, and tube function of VECs, actin cytoskeleton staining, TUNEL staining, immunofluorescence, western-blot and qPCR. In vivo, EPC-Exo exhibit inhibitory effects on neointima formation following carotid artery injury and reduce the levels of inflammatory factors, including TNF-α and IL-6. Additionally, EPC-Exo downregulate the expression of adhesion molecules on the injured vascular wall. Notably, EPC-Exo can adhere to the injured vascular area, promoting enhanced endothelial function and inhibiting vascular endothelial hyperplasia Moreover, they regulate the expression of proteins and genes associated with apoptosis, including B-cell lymphoma-2 (Bcl2), Bcl2-associated x (Bax), and Caspase-3. In vitro, experiments further confirmed that EPC-Exo treatment significantly enhances the proliferation, migration, and tube formation of VECs. Furthermore, EPC-Exo effectively attenuate lipopolysaccharides (LPS)-induced apoptosis of VECs and regulate the Bcl2/Bax/Caspase-3 signaling pathway. This study demonstrates that exosomes derived from EPCs have the ability to inhibit excessive carotid intimal hyperplasia after BI, promote the repair of endothelial cells in the area of intimal injury, and enhance endothelial function. The underlying mechanism involves the suppression of inflammation and anti-apoptotic effects. The fundamental mechanism for this anti-apoptotic effect involves the regulation of the Bcl2/Bax/Caspase-3 signaling pathway.


Assuntos
Lesões das Artérias Carótidas , Células Progenitoras Endoteliais , Exossomos , Animais , Ratos , Proteína X Associada a bcl-2/metabolismo , Lesões das Artérias Carótidas/metabolismo , Caspase 3/metabolismo , Proliferação de Células , Células Progenitoras Endoteliais/metabolismo , Exossomos/metabolismo , Hiperplasia/metabolismo , Lipopolissacarídeos/metabolismo , Ratos Sprague-Dawley , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
4.
J Ethnopharmacol ; 326: 117972, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38403005

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Guhan Yangsheng Jing (GHYSJ) is a traditional Chinese patent medicine, that has the function of nourishing the kidney and replenishing the essence, invigorating the brain and calming the mind. It is often used to treat dizziness, memory loss, sleep disorders, fatigue, and weakness, etc. However, its mechanism for improving sleep has not yet been determined. AIM OF THE STUDY: This study aims to explore the effects of GHYSJ on Sleep Deprivation (SD)-induced hippocampal neuronal pyroptotic injury, learning and cognitive abilities, and sleep quality in mice. METHODS: In this study, a PCPA-induced SD mouse model was established. We assessed the influence of GHYSJ on sleep quality and mood by using the pentobarbital-induced sleep test (PIST) and sucrose preference test (SPT). The pharmacological effects of GHYSJ on learning and memory impairment were evaluated by the Morris Water Maze (MWM) and Open Field Test (OFT). Pathological changes in the hippocampal tissue of the SD rats were observed via HE staining and Nissl staining. The severity of neuronal damage was evaluated by detecting the expression of the neuronal marker Microtubule-associated protein 2 (MAP2), via immunohistochemistry and immunofluorescence. Furthermore, the levels of neurotransmitter 5-hydroxytryptophan (5-HTP), 5-hydroxy tryptamine (5-HT), γ-aminobutyric acid (GABA), and Glutamic acid (Glu) in hippocampal tissues, as well as the expression of inflammatory factors Interleukin-1ß (IL-1ß) and Interleukin-18 (IL-18) in serum, were determined by ELISA. The expressions of mRNA and protein NOD-like receptor thermal protein domain associated protein 3 (NLRP3), Gasdermin D (GSDMD), Cysteinyl aspartate specific proteinase1 (Caspase1), High mobility group box-1 protein (HMGB1) and Apoptosis-associated speck-like protein containing CARD (ASC) related to the cellular ferroptosis pathway were tested and analyzed by RT-PCR and WB respectively. RESULTS: PCPA significantly diminishes the sleep span of experimental animals by expediting the expenditure of 5-HT, consequently establishing an essentially direct SD model. The intervention of GHYSJ displays remarkable efficacy in mitigating insomnia symptoms, encompassing difficulties in initiating sleep and insufficient sleep duration. Likewise, it ameliorates memory function impairments induced by sleep deprivation, along with symptoms such as fatigue and depletion of vitality. GHYSJ exerts a protective influence on hippocampal neurons facilitated by inhibiting the down regulation of MAP2 and maintaining the equilibrium of neurotransmitters (5-HTP, 5-HT, GABA, and Glu). It diminishes the expression of intracellular pyroptosis-associated inflammatory factors (IL-1ß and IL-18) and curbs the activation of the NLRP3/Caspase1/GSDMD pyroptosis-related signaling pathways, thereby alleviating the damage caused by hippocampal neuronal pyroptosis.


Assuntos
Ácido Aspártico , Interleucina-18 , Camundongos , Animais , Ratos , Privação do Sono , Proteína 3 que Contém Domínio de Pirina da Família NLR , 5-Hidroxitriptofano , Serotonina , Sono , Transdução de Sinais , Neurônios , Transtornos da Memória/tratamento farmacológico , Ácido gama-Aminobutírico , Caspase 1
5.
J Environ Manage ; 352: 120152, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38266528

RESUMO

Production of artificial humic substances (AHS) from waste biomass will contribute to environmental protection and agricultural productivity. However, there is still a lack of a faster, more efficient and eco-friendly way for sustainable production. In this study, we proposed a method to accelerate the production of AHS from cotton stalks by mild pyrolysis and H2O2 oxidation in only 4 hours, and investigated the formation of AHS during biomass transformation. We found that the process increased the aromatic matrix and facilitated biomass transformation by enhancing the depolymerization of lignin into micromolecular phenolics (e.g., guaiacol, p-ethyl guaiacol, etc.). The optimum conditions of pyrolysis at 250 °C and oxidation with 6 mL H2O2 (5 wt%) yielded up to 19.28 ± 1.30 wt% artificial humic acid (AHA) from cotton stalks. In addition, we used iron oxyhydroxide (FeOOH) to catalyze biomass transformation and investigated the effect of FeOOH on the composition and properties of AHS. 1.5 wt% FeOOH promoted the increased content of artificial fulvic acid (AFA) in AHS from 10.1% to 26.5%, eventually improving the activity of AHS. FeOOH raised the content of oxygen-containing groups, such as carboxylic acids and aldehyde, and significantly increased polysaccharide (10.94%-18.95%) and protein (1.95%-2.18%) derivatives. Polymerization of amino acid analogs and many small-molecule carbohydrates (e.g., furans, aldehydes, ketones, and their derivatives) promoted AFA formation. Finally, carbon flow analysis and maize incubation tests confirmed that AHS were expected to achieve carbon emission reductions and reduce environmental pollution from fertilizers. This study provides a sustainable strategy for the accelerated production of AHS, which has important application value for waste biomass resource utilization.


Assuntos
Compostos Férricos , Substâncias Húmicas , Peróxido de Hidrogênio , Substâncias Húmicas/análise , Biomassa , Carbono/química , Guaiacol
6.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4164-4172, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37802785

RESUMO

The study aims to observe the effects and explore the mechanisms of Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination in the treatment of the inflammatory response of mice with atherosclerosis(AS) via the Toll-like receptor 4(TLR4)/myeloid differentiation primary response protein 88(MyD88)/nuclear factor-κB(NF-κB) signaling pathway. Male ApoE~(-/-) mice were randomly assigned into a model group, a Buyang Huanwu Decoction group, an Astragali Radix-Angelicae Sinensis Radix combination group, and an atorvastatin group, and male C57BL/6J mice of the same weeks old were used as the control group. Other groups except the control group were given high-fat diets for 12 weeks to establish the AS model, and drugs were administrated by gavage. Aortic intimal hyperplasia thickness, blood lipid level, plasma inflammatory cytokine levels, M1/M2 macrophage markers, and expression levels of proteins in TLR4/MyD88/NF-κB pathway in the vessel wall were measured to evaluate the effects of drugs on AS lesions and inflammatory responses. The results showed that the AS model was successfully established with the ApoE~(-/-) mice fed with high-fat diets. Compared with the control group, the model group showed elevated plasma total cholesterol(TC), triglyceride(TG), and low-density lipoprotein cholesterol(LDL-c) levels(P<0.05), thickened intima(P<0.01), and increased plasma tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6) levels(P<0.01). Moreover, the model group showed increased expression of vascular cell adhesion molecule-1(VCAM-1) and inducible nitric oxide synthase(iNOS)(P<0.01), inhibited expression of endothelial nitric oxide synthase(eNOS) and cluster of differentiation 206(CD206)(P<0.01), and up-regulated mRNA and protein levels of TLR4, MyD88, NF-κB inhibitor alpha(IκBα), and NF-κB in the vessel wall(P<0.05). Compared with the model group, Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination lowered the plasma TC and LDL-c levels(P<0.01), alleviated the intimal hyperplasia(P<0.01), and reduced the plasma TNF-α and IL-6 levels(P<0.05). Moreover, the two interventions promoted the expression of eNOS and CD206(P<0.05), inhibited the expression of VCAM-1 and iNOS(P<0.01), and down-regulated the mRNA and protein levels of TLR4, MyD88, IκBα, and NF-κB(P<0.05) in the vessel wall. This study indicated that Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination could delay the progression of AS, inhibit the polarization of vascular wall macrophages toward M1 type, and attenuate vascular inflammatory response by inhibiting the activation of TLR4/MyD88/NF-κB signaling pathway in the vascular wall. Astragali Radix and Angelicae Sinensis Radix were the main pharmacological substances in Buyang Huanwu Decoction for alleviating the AS vascular inflammatory response.


Assuntos
Aterosclerose , NF-kappa B , Camundongos , Masculino , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , LDL-Colesterol , Hiperplasia , Camundongos Endogâmicos C57BL , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Apolipoproteínas E/metabolismo , Apolipoproteínas E/uso terapêutico , RNA Mensageiro
7.
Zhongguo Zhong Yao Za Zhi ; 48(1): 202-210, 2023 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-36725272

RESUMO

This study aims to explore the effect of Buyang Huanwu Decoction glycosides on the inflammatory response of apolipoprotein E~(-/-)(ApoE~(-/-)) mice and RAW264.7 cells through nuclear factor kappa-B(NF-κB) signaling pathway. In the in vivo experiment, ApoE~(-/-) mice were fed with high-fat diets for 12 weeks to induce the animal model of atherosclerosis, and 75 µg·mL~(-1) oxidized low-density lipoprotein(Ox-LDL) incubated RAW264.7 cells for 24 h to establish the atherosclerosis cell model. Automatic biochemical analyzer, hematoxylin-eosin(HE) staining, enzyme-linked immunosorbent assay(ELISA), Western blot, and droplet digital polymerase chain reaction(PCR) were used to determine the blood lipid levels, aortic intimal thickness, inflammatory factor content, NF-κB pathway-related proteins, and mRNA expression levels, and evaluate arterial atherosclerotic lesions and anti-atherosclerotic mechanisms of the drug. The model of atherosclerosis was successfully established in ApoE~(-/-) mice after 12 weeks of feeding with high-fat diets. In the model group, the plasma levels of total cholesterol(TC), triglyceride(TG), and low-density lipoprotein cholesterol(LDL-C) were increased(P<0.01), the intima of the blood vessels was thickened, the levels of inflammatory factors tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6) were increased, and the protein and mRNA expressions of NF-κB and inhibitor of NF-κB(IκBα) were significantly increased as compared with the control group. Compared with the model group, the high-dose Buyang Huanwu Decoction glycoside group decreased the plasma levels of TC, TG, and LDL-C, reduced the plaque area and thickness and the content of inflammatory factor TNF-α, and inhibited the protein and mRNA expressions of NF-κB and IκBα, with the effect same as Buyang Huanwu Decoction. In the in vivo experiment, 75 µg·mL~(-1) Ox-LDL stimulated RAW264.7 cells for 24 h to successfully establish a foam cell model. As compared with the control group, the nuclear amount of NF-κB and the protein and mRNA expressions of IκBα in the model group increased. Compared with the model group, the middle-dose and high-dose Buyang Huanwu Decoction glycoside groups decreased the nuclear amount of NF-κB and the protein and mRNA expressions of IκBα. The above results show that the glycosides are the main effective substances of Buyang Huanwu Decoction against atherosclerosis, which inhibit the NF-κB pathway and reduce the inflammatory response, thus playing the role against atherosclerotic inflammation same as Buyang Huanwu Decoction.


Assuntos
Aterosclerose , NF-kappa B , Camundongos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Glicosídeos/farmacologia , LDL-Colesterol , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Transdução de Sinais , Inflamação/tratamento farmacológico , Interleucina-6 , Apolipoproteínas E/genética , Apolipoproteínas E/farmacologia , RNA Mensageiro/metabolismo
8.
Int J Biol Macromol ; 228: 582-593, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36563826

RESUMO

Osteoarthritis (OA) is a chronic joint disease characterized by progressive cartilage degeneration, which imposes a heavy physical and financial burden on the middle-aged and elderly population. As the pathogenesis of OA has not been fully elucidated, it is of great importance to develop targeted therapeutic or preventive medications. Traditional therapeutic drugs, such as non-steroidal anti-inflammatory drugs, steroids and opioids, have significant side effects, making the exploration for safe and effective alternative therapeutic drugs urgent. In recent years, many studies have reported the role of plant-derived polysaccharides in anti-inflammation, anti-oxidation, regulation of chondrocyte metabolism and proliferation, and cartilage protection, and have demonstrated their great potential in the treatment of OA. Therefore, by focusing on studies related to the intervention of plant-derived polysaccharides in OA, including in vivo and in vitro experiments, this review aimed to classify and summarize the existing research findings according to different mechanisms of action. In addition, reports on plant-derived polysaccharides as nanoparticles were also explored. Then, candidate monomers and theoretical bases were provided for the further development and application of novel drugs in the treatment of OA.


Assuntos
Cartilagem Articular , Osteoartrite , Idoso , Humanos , Pessoa de Meia-Idade , Osteoartrite/patologia , Cartilagem Articular/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Condrócitos , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Polissacarídeos/metabolismo
9.
Zhongguo Zhong Yao Za Zhi ; 48(23): 6423-6433, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38212000

RESUMO

This study aims to investigate the molecular mechanism of tanshinone Ⅱ_(A )(TaⅡ_A) combined with endothelial progenitor cells-derived exosomes(EPCs-exos) in protecting the aortic vascular endothelial cells(AVECs) from oxidative damage via the phosphatidylinositol 3 kinase(PI3K)/protein kinase B(Akt) pathway. The AVECs induced by 1-palmitoyl-2-(5'-oxovaleroyl)-sn-glycero-3-phosphocholine(POVPC) were randomly divided into model, TaⅡ_A, EPCs-exos, and TaⅡ_A+EPCs-exos groups, and the normal cells were taken as the control group. The cell counting kit-8(CCK-8) was used to examine the cell proliferation. The lactate dehydrogenase(LDH) cytotoxicity assay kit, Matrigel assay, DCFH-DA fluorescent probe, and laser confocal microscopy were employed to examine the LDH release, tube-forming ability, cellular reactive oxygen species(ROS) level, and endothelial cell skeleton morphology, respectively. The enzyme-linked immunosorbent assay was employed to measure the expression of interleukin(IL)-1ß, IL-6, and tumor necrosis factor(TNF)-α. Real-time fluorescence quantitative PCR(qRT-PCR) and Western blot were employed to determine the mRNA and protein levels, respectively, of PI3K and Akt. Compared with the control group, the model group showed decreased cell proliferation and tube-forming ability, increased LDH release, elevated ROS level, obvious cytoskeletal disruption, increased expression of IL-1ß, IL-6, and TNF-α, and down-regulated mRNA and protein levels of PI3K and Akt. Compared with the model group, TaⅡ_A or EPCs-exos alone increased the cell proliferation and tube-forming ability, reduced LDH release, lowered the ROS level, repaired the damaged skeleton, decreased the expression of IL-1ß, IL-6, and TNF-α, and up-regulated the mRNA and protein levels of PI3K and Akt. TaⅡ_A+EPCs-exos outperformed TaⅡ_A or EPCs-exos alone in regulating the above indexes. The results demonstrated that TaⅡ_A and EPCs-exos exerted a protective effect on POVPC-induced AVECs by activating the PI3K/Akt pathway, and the combination of the two had stronger therapeutic effect.


Assuntos
Abietanos , Células Progenitoras Endoteliais , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Endotélio Vascular , Estresse Oxidativo , RNA Mensageiro/metabolismo
10.
Zhongguo Zhong Yao Za Zhi ; 48(24): 6702-6710, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38212030

RESUMO

This study aims to explore the influence of Polygonati Rhizoma on the pyroptosis in the rat model of diabetic macroangiopathy via the NOD-like receptor thermal protein domain associated protein 3(NLRP3)/cysteinyl aspartate specific proteinase-1(caspase-1)/gasdermin D(GSDMD) pathway. The rat model of diabetes was established by intraperitoneal injection of streptozotocin(STZ) combined with a high-fat, high-sugar diet. The blood glucose meter, fully automated biochemical analyzer, hematoxylin-eosin(HE) staining, enzyme-linked immunosorbent assay, immunofluorescence, immunohistochemistry, and Western blot were employed to measure blood glucose levels, lipid levels, vascular thickness, inflammatory cytokine levels, and expression levels of pyroptosis-related proteins. The mechanism of pharmacological interventions against the injury in the context of diabetes was thus explored. The results demonstrated the successful establishment of the model of diabetes. Compared with the control group, the model group showed elevated levels of fasting blood glucose, total cholesterol(TC), triglycerides(TG) and low-density lipoprotein cholesterol(LDL-c), lowered level of high-density lipoprotein cholesterol(HDL-c), thickened vascular intima, and elevated serum and aorta levels of tumor necrosis factor-α(TNF-α), interleukin-1ß(IL-1ß) and interleukin-18(IL-18). Moreover, the model group showed increased NLRP3 inflammasomes and up-regulated levels of caspase-1 and GSDMD in aortic vascular cells. Polygonati Rhizoma intervention reduced blood glucose and lipid levels, inhibited vascular thickening, lowered the levels of TNF-α, IL-1ß, IL-18 in the serum and aorta, attenuated NLRP3 inflammasome expression, and down-regulated the expression levels of caspase-1 and GSDMD, compared with the model group. In summary, Polygonati Rhizoma can slow down the progression of diabetic macroangiopathy by inhibiting pyroptosis and alleviating local vascular inflammation.


Assuntos
Complicações do Diabetes , Diabetes Mellitus , Doenças Vasculares , Animais , Ratos , Caspase 1/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Interleucina-18 , Glicemia , Piroptose , Fator de Necrose Tumoral alfa , Inflamassomos , Colesterol , Lipídeos
11.
Phytomedicine ; 105: 154385, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35987015

RESUMO

BACKGROUND: Buyang Huanwu Decoction (BYHWD) has been used to treat or prevent cardiovascular disease. The prescription and its glycosides have the effects of protecting blood vessels, and resisting atherosclerosis. However, their protective mechanism of anti-atherosclerosis remains unclear. PURPOSE: This study aims to explore whether glycosides are the main effective components of BYHWD in anti-atherosclerotic inflammation and whether their mechanism is related to the classical JAK/STAT inflammatory signaling pathway. METHODS: UPLC-MSMS method was used to determine the main components of BYHWD and its glycosides. Network pharmacological analysis and molecular docking were used to predict the potential therapeutic targets of glycosides. Atherosclerosis model was prepared by feeding HFD in ApoE-/- mice. The effects of glycosides on atherosclerosis were detected by blood lipids measurement, Masson staining, immunohistochemistry, immunofluorescence, western-blot and droplet digital PCR. RAW264.7 cells were used to establish foam cells model. The mechanism of glycosides anti-atherosclerotic inflammation was detected by measuring intracellular lipids, Oil Red O staining, ELISA, western-blot and droplet digital PCR. RESULTS: 1. Glycosides were absorbed into the blood through oral administrations and existed in the blood in the form of glycosides structures. 2. Glycosides attenuated hyperlipidemia, alleviated atherosclerotic lesions and inhibited inflammatory reaction. They could regulate blood lipids by decreasing TC, TG, LDL-c, increasing HDL-c level in ApoE-/- mice, alleviating intimal area and thickness, and inhibiting atherosclerotic plaque formation, which were similar to BYHWD. 3. Glycosides anti-atherosclerotic inflammation was related to JAK/STAT signaling pathway by network pharmacology analysis. Interactions between glycosides (astragaloside IV, paeoniflorin and amygdalin) and JAK/STAT pathway-related proteins by molecular docking. 4. Glycosides alleviated atherosclerotic inflammation by decreasing the release of pro-inflammatory factors and adhesions molecules, inhibiting the activation of JAK/STAT pathway in vivo. 5. Glycosides reduced the number of foam cells and intracellular lipid content. It also prevented the inflammation of macrophages by decreasing the levels of pro-inflammatory factors, reducing the phosphorylation of JAK2, STAT1 and STAT3 in vitro. CONCLUSION: This study demonstrated that glycosides were the main active components of BYHWD, and they could inhibit atherosclerosis by alleviating atherosclerotic inflammation. the mechanism is inhibiting the activation of JAK/STAT signaling pathway.


Assuntos
Aterosclerose , Glicosídeos , Animais , Anti-Inflamatórios , Apolipoproteínas E , Medicamentos de Ervas Chinesas , Inflamação , Janus Quinases , Camundongos , Simulação de Acoplamento Molecular , Fatores de Transcrição STAT , Transdução de Sinais
12.
J Healthc Eng ; 2022: 9271879, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310191

RESUMO

Atherosclerosis is a chronic inflammatory disease of the arterial wall and the main cause of cardiovascular disease and cerebrovascular disease. In recent years, the mortality rate of atherosclerotic diseases has become higher and higher. This article aims to study the dysregulation of atherosclerotic vascular endothelial secretion and smooth muscle cell proliferation, and put forward and practice the pathological research of atherosclerotic disease. This article describes in detail atherosclerosis, endothelial dysfunction, and smooth muscle cell proliferation, and studies the causes of atherosclerosis. Research results indicate that atherosclerotic vascular endothelial dysfunction also has a great influence on the proliferation of smooth muscle cells. Many genes and environmental factors can regulate the functions of endothelial cells, vascular smooth muscle cells, and mononuclear macrophages and affect the formation of atherosclerosis. At the same time, diabetes, hypertension, hyperlipidemia, obesity, etc. are the main causes of atherosclerosis. The number of patients with cardiovascular and cerebrovascular diseases dying from atherosclerosis in the country is increasing, and the proportion is close to 30%.


Assuntos
Aterosclerose , Células Endoteliais , Aterosclerose/patologia , Proliferação de Células , Humanos , Miócitos de Músculo Liso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...