Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 182: 108353, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38035535

RESUMO

Micro/nanoplastics in the environment can be ingested by organisms and spread throughout the food chain, ultimately posing a threat to human health. However, the risk of continuous oral exposure in mammals remains unresolved. In this study, we utilized a continuous gavage mouse model to investigate the potential intestinal risks associated with oral exposure to polystyrene micro/nanoplastics (PS-MNPs) with environmentally relevant concentrations. The effects of PS-MNPs with different particle sizes on the gut microbiota, intestinal barrier, and intestinal immune function were evaluated. PS-MNPs can accumulate in the intestine after oral exposure and alter the composition of the gut microbiota. Exposure to PS-MNPs significantly reduced the ratio of Firmicutes to Bacteroidetes as well as the number of potentially beneficial bacteria in the gut, while the number of potentially harmful bacteria significantly increased. The short-chain fatty acids metabolized by gut microbiota were significantly changed by PS-MNPs. Exposure to PS-MNPs disrupts the function of the intestinal barrier and leads to inflammation in the intestines. The levels of secretory immunoglobulin A in the intestine and the differentiation of CD4+ and CD8+ T cells in mesenteric lymph nodes were significantly decreased by PS-MNPs. Moreover, the impact of PS-MNPs on mammalian intestinal health is influenced by the exposure duration and particle size, rather than the concentration. It also suggests that nanoplastics may pose more severe environmental risks.


Assuntos
Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Microplásticos , Disbiose , Linfócitos T CD8-Positivos , Inflamação , Poliestirenos/farmacologia , Mamíferos
2.
Int J Mol Sci ; 24(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37511553

RESUMO

As a biological macromolecule, the superantigen staphylococcal enterotoxin C2 (SEC2) is one of the most potent known T-cell activators, and it induces massive cytotoxic granule production. With this property, SEC2 and its mutants are widely regarded as immunomodulating agents for cancer therapy. In a previous study, we constructed an MHC-II-independent mutant of SEC2, named ST-4, which exhibits enhanced immunocyte stimulation and antitumor activity. However, tumor cells have different degrees of sensitivity to SEC2/ST-4. The mechanisms of immune resistance to SEs in cancer cells have not been investigated. Herein, we show that ST-4 could activate more powerful human lymphocyte granule-based cytotoxicity than SEC2. The results of RNA-seq and atomic force microscopy (AFM) analysis showed that, compared with SKOV3 cells, the softer ES-2 cells could escape from SEC2/ST-4-induced cytotoxic T-cell-mediated apoptosis by regulating cell softness through the CDC42/MLC2 pathway. Conversely, after enhancing the stiffness of cancer cells by a nonmuscle myosin-II-specific inhibitor, SEC2/ST-4 exhibited a significant antitumor effect against ES-2 cells by promoting perforin-dependent apoptosis and the S-phase arrest. Taken together, these data suggest that cell stiffness could be a key factor of resistance to SEs in ovarian cancer, and our findings may provide new insight for SE-based tumor immunotherapy.


Assuntos
Antineoplásicos , Enterotoxinas , Humanos , Enterotoxinas/farmacologia , Enterotoxinas/metabolismo , Superantígenos/farmacologia , Antineoplásicos/farmacologia , Linfócitos T , Ativação Linfocitária
3.
Virus Genes ; 59(5): 678-687, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37380814

RESUMO

Hepatitis B virus (HBV) infection is a noteworthy cause of liver diseases, especially cirrhosis and hepatocellular carcinomas. However, the interaction between the host and HBV has not been fully elucidated. Peptide YY (PYY) is a 36-amino-acid gastrointestinal hormone that is mainly involved in the regulation of the human digestive system. This study found that PYY expression was reduced in HBV-expressing hepatocytes and HBV patients. Overexpression of PYY could significantly inhibit HBV RNA, DNA levels, and the secretion of HBsAg. In addition, PYY inhibits HBV RNA dependent on transcription through reducing the activities of CP/Enh I/II, SP1 and SP2. Meanwhile, PYY blocks HBV replication independent on core, polymerase protein and ε structure of pregenomic RNA. These results suggest that PYY can impair HBV replication by suppressing viral promoters/enhancers in hepatocytes. Our data shed light on a novel role for PYY as anti-HBV restriction factor.


Assuntos
Hepatite B , Neoplasias Hepáticas , Humanos , Vírus da Hepatite B/genética , Peptídeo YY , Replicação Viral/genética , Hepatite B/genética , Antígenos de Superfície da Hepatite B/genética , RNA
4.
Front Med (Lausanne) ; 9: 944489, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935763

RESUMO

Hepatitis B virus (HBV) infection remains a major health problem worldwide, and the current antiviral therapy, including nucleoside analogs, cannot achieve life-long cure, and clarification of antiviral host immunity is necessary for eradication. Here, we found that a clathrin-binding membrane protein epsin3 (EPN3) negatively regulates the expression of HBV RNA. EPN3 expression was induced by transfection of an HBV replicon plasmid, and reduced HBV-RNA level in hepatic cell lines and murine livers hydrodynamically injected with the HBV replicon plasmid. Viral RNA reduction by EPN3 was dependent on transcription, and independent from epsilon structure of viral RNA. Viral RNA reduction by overexpression of p53 or IFN-α treatment, was attenuated by knockdown of EPN3, suggesting its role downstream of IFN-α and p53. Taken together, this study demonstrates the anti-HBV role of EPN3. The mechanism how it decreases HBV transcription is discussed.

5.
J Immunol ; 205(8): 2066-2076, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32938730

RESUMO

CD8+ T cells can switch between fatty acid catabolism and mitochondrial energy metabolism to sustain expansion and their cytotoxic functions. ST-4 is a TCR-enhanced mutant derived from superantigen staphylococcal enterotoxin C2 (SEC2), which can hyperactivate CD4+ T cells without MHC class II molecules. However, whether ST-4/SEC2 can enhance metabolic reprogramming in CD8+ T cells remains poorly understood. In this study, we found that ST-4, but not SEC2, could induce proliferation of purified CD8+ T cell from BALB/c mice in Vß8.2- and -8.3-specific manners. Results of gas chromatography-mass spectroscopy analysis showed that fatty acid contents in CD8+ T cells were increased after ST-4 stimulation. Flow cytometry and Seahorse analyses showed that ST-4 significantly promoted mitochondrial energy metabolism in CD8+ T cells. We also observed significantly upregulated levels of gene transcripts for fatty acid uptake and synthesis, and significantly increased protein expression levels of fatty acid and mitochondrial metabolic markers of mTOR/PPARγ/SREBP1 and p38-MAPK signaling pathways in ST-4-activated CD8+ T cells. However, blocking mTOR, PPARγ, SREBP1, or p38-MAPK signals with specific inhibitors could significantly relieve the enhanced fatty acid catabolism and mitochondrial capacity induced by ST-4. In addition, blocking these signals inhibited ST-4-stimulated CD8+ T cell proliferation and effector functions. Taken together, our findings demonstrate that ST-4 enhanced fatty acid and mitochondria metabolic reprogramming through mTOR/PPARγ/SREBP and p38-MAPK signaling pathways, which may be important regulatory mechanisms of CD8+ T cell activation. Understanding the effects of ST-4-induced regulatory metabolic networks on CD8+ T cells provide important mechanistic insights to superantigen-based tumor therapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Metabolismo Energético , Enterotoxinas , Ácidos Graxos/imunologia , Ativação Linfocitária/efeitos dos fármacos , Mitocôndrias/imunologia , Mutação , Animais , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/imunologia , Enterotoxinas/genética , Enterotoxinas/imunologia , Enterotoxinas/toxicidade , Feminino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/imunologia , Camundongos , Camundongos Endogâmicos BALB C
6.
Int J Pharm ; 586: 119498, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32505575

RESUMO

Solid tumors are intrinsically resistant to immunotherapy because of the major challenges including the immunosuppression and poor penetration of drugs and lymphocytes into solid tumors due to the complicated tumor microenvironment (TME). Our previous study has created a novel superantigen mutant ST-4 to efficiently active the T lymphocytes and alleviate immune suppression. In the present study, to accumulate ST-4 into the TME, we constructed a recombinant protein, ST-4-iRGD, by fusing ST-4 to a tumor-homing peptide, iRGD. We hypothesized that ST-4-iRGD could internalize into the TME through iRGD-mediated tumor targeting and tumor tissue penetrating to activate the regional immunoreaction. The results of in vitro studies showed that ST-4-iRGD achieved improved tumor targeting and cytotoxicity in mouse B16F10 melanoma cells. The iRGD-mediated tumor tissue penetration was further confirmed by imaging and immunofluorescence studies in vivo, wherein higher distribution of ST-4-iRGD was observed in the mouse 4T1 breast tumor model. Moreover, ST-4-iRGD exhibited enhanced anti-solid tumor characteristics and induced improved lymphocyte infiltration in the B16F10 and 4T1 models. In conclusion, using iRGD to facilitate better dissemination of the therapeutic agent ST-4 throughout a solid tumor mass is feasible, and ST-4-iRGD may be a potential candidate for efficient cancer immunotherapy in the future.


Assuntos
Neoplasias da Mama/terapia , Imunoterapia/métodos , Melanoma Experimental/terapia , Oligopeptídeos/administração & dosagem , Superantígenos/administração & dosagem , Animais , Neoplasias da Mama/imunologia , Linhagem Celular Tumoral , Feminino , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Superantígenos/genética , Superantígenos/metabolismo , Linfócitos T/imunologia , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Sci Total Environ ; 694: 133794, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31756791

RESUMO

As a kind of newly emerging pollutant, nanoplastics are easily to be ingested by organisms, and cause severe damage to biological functions because of their small size, high specific surface area, and strong biological penetration. Recently, there are increasing reports of numerous airborne microplastics, including polystyrene (PS), being detected in atmospheric samples, which implies a potential risk to the human respiratory system. In this work, we evaluated the effects of polystyrene nanoparticles of two different sizes (PS-NP25: 25 nm diameter and PS-NP70: 70 nm diameter) on the human alveolar epithelial A549 cell line including internalization, cell viability, cell cycle, apoptosis, and associated gene transcription and protein expression. Results showed that PS-NP25 was internalized more rapidly and efficiently into the cytoplasm of A549 than PS-NP70. PS-NPs significantly affected the cell viability, caused cell cycle S phrase arrest, activated inflammatory gene transcription, and changed the expression of proteins associated with cell cycle and pro-apoptosis. PS-NPs induced significant up-regulation of pro-inflammatory cytokines such as IL-8, NF-κB, and TNF-α, as well as pro-apoptotic proteins such as DR5, caspase-3, caspase-8, caspase-9, and cytochrome c, which revealed that PS-NPs triggered a TNF-α-associated apoptosis pathway. This study suggests that exposure duration, diameter, and concentration are the key factors for evaluating the toxicological effects of PS-NPs on alveolar epithelial cells. More attention must be focused on the risk of nanoplastic-related air pollution and the environmental toxicological effects of nanoplastics on humans and other terrestrial mammals.


Assuntos
Poluentes Ambientais/toxicidade , Nanopartículas/toxicidade , Plásticos/toxicidade , Linhagem Celular , Células Epiteliais , Humanos , Pulmão , Testes de Toxicidade
8.
J Biol Chem ; 293(51): 19771-19784, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30352872

RESUMO

SEC2, a major histocompatibility complex class II (MHC II)-dependent T-cell mitogen, binds MHC II and T-cell receptor (TCR) Vßs to induce effective co-stimulating signals for clonal T-cell expansion. We previously characterized a SEC2 mutant with increased recognition of TCR Vßs, ST-4, which could intensify NF-κB signaling transduction, leading to IL-2 production and T-cell activation. In this study, we found that in contrast to SEC2, ST-4 could induce murine CD4+ T-cell proliferation in a Vß8.2- and Vß8.3-specific manner in the absence of MHC II+ antigen-presenting cells (APCs). Furthermore, although IL-2 secretion in response to either SEC2 or ST-4 stimulation was accompanied by up-regulation of protein kinase Cθ (PKCθ), inhibitor of κB (IκB), α and ß IκB kinase (IKKα/ß), IκBα, and NF-κB in mouse splenocytes, only ST-4 could activate CD4+ T cells in the absence of MHC II+ APCs through the PKCθ/NF-κB signaling pathway. The PKCθ inhibitor AEB071 significantly suppressed SEC2/ST-4-induced T-cell proliferation, CD69 and CD25 expression, and IL-2 secretion with or without MHC II+ APCs. Further, SEC2/ST-4-induced changes in PKCθ/NF-κB signaling were significantly relieved by AEB071 in a dose-dependent manner. Using Lck siRNA, we found that Lck controlled SEC2/ST-4-induced phosphorylation of PKCθ. We also demonstrated that the IL-2R/STAT5 pathway is essential for SEC2/ST-4-induced T-cell activation. Collectively, our data demonstrate that an enhanced ST-4-TCR interaction can compensate for lack of MHC II and stimulate MHC II-free CD4+ T-cell proliferation via PKCθ/NF-κB and IL-2R/STAT5 signaling pathways. Compared with SEC2, intensified PKCθ/NF-κB and IL-2R/STAT5 signals induced by ST-4 lead to enhanced T-cell activation. The results of this study will facilitate better understanding of TCR-based immunotherapies for cancer.


Assuntos
Enterotoxinas/genética , Ativação Linfocitária , Mutação , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Linfócitos T/imunologia , Animais , Proliferação de Células , Enterotoxinas/metabolismo , Feminino , Regulação da Expressão Gênica/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Interleucina-2/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/metabolismo , Fosforilação , Proteína Quinase C-theta/metabolismo , Receptores de Interleucina-2/metabolismo , Fator de Transcrição STAT5/metabolismo , Baço/imunologia , Linfócitos T/citologia
9.
Toxicol Appl Pharmacol ; 333: 51-59, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28807764

RESUMO

Staphylococcal enterotoxin C2 (SEC2), a superantigen, causes rapid clonal expansion of lymphocytes and secretion of T cell growth factors, leading to a severe inflammatory response within tissues. Although previous studies have shown that ST-4, a SEC2 mutant with enhanced recognition of Vß regions of T-cell receptors (TCRVß), can activate an increased number of T cells and produce more cytokines than SEC2. However, the signaling mechanisms of SEC2/ST-4-mediated immune activation have not been addressed. In this study, we showed that the phosphatidylinositide-3-kinase (PI-3K) inhibitor LY294002, mammalian target of rapamycin (mTOR) inhibitor rapamycin, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibitor Bay11-7085 could suppress SEC2/ST-4-induced proliferation, CD69/CD25 expression, cell-cycle progression, and IL-2 production in BALB/c mouse splenocytes. In addition, we observed significantly upregulated expression of p70S6K, cyclin E, cyclin D3, and NF-ĸB/p65, but downregulated expression of p27kip during SEC2/ST-4-driven T cells activation. However, SEC2/ST-4-induced changes in cell cycle and PI3K/mTOR signaling were significantly relieved by either LY294002 or rapamycin, and the induction of NF-ĸB/p65 induced was significantly downregulated by Bay11-7085. Moreover, we found that IL-2 secretion was positively associated with p65 expression in a time- and dose-dependent manner. Taken together, our findings demonstrate the involvement of PI3K/mTOR and NF-κB signaling pathways in SEC2/ST-4-induced T cell activation. ST-4 intensifies PI3K/mTOR and NF-ĸB signaling transduction, ultimately leading to enhance T cell activation. These results provide a theoretical mechanism for future immunotherapy using ST-4.


Assuntos
Enterotoxinas/genética , Ativação Linfocitária/imunologia , NF-kappa B/imunologia , Fosfatidilinositol 3-Quinases/imunologia , Linfócitos T/imunologia , Serina-Treonina Quinases TOR/imunologia , Animais , Células Cultivadas , Feminino , Interleucina-2/imunologia , Camundongos Endogâmicos BALB C , Mutação , Transdução de Sinais , Baço/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...