Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Des Devel Ther ; 17: 3493-3505, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034481

RESUMO

Purpose: This study examined the underlying mechanisms of SJD's anti-inflammatory and analgesic effects on acute GA flares. Methods: This study used pharmacology network and molecular docking methods. The active ingredients of ShuiJingDan (SJD) were obtained from the Traditional Chinese Medicine Systems Pharmacology Analysis Platform (TCMSP), and the relevant targets of GA were obtained from the Online Mendelian Inheritance in Man (OMIM) database and Therapeutic Target Database (TTD). The core drug group-target-disease Venn diagram was formed by crossing the active ingredients of SJD and the relevant targets. Gene Ontology (GO) analysis was conducted for functional annotation, DAVID was used for Kyoto Encyclopedia of Genes, and Genomes pathway enrichment analysis, and R was used to find the core targets. The accuracy of SJD network pharmacology analysis in GA treatment was verified by molecular docking simulations. Finally, a rat GA model was used to further verify the anti-inflammatory mechanism of SJD in the treatment of GA. Results: SJD mainly acted on target genes including IL1B, PTGS2, CXCL8, EGF, and JUN, as well as signal pathways including NF-κB, Toll-like receptor (TLR), IL-17, and MAPK. The rat experiments showed that SJD could significantly relieve ankle swelling, reduce the local skin temperature, and increased the paw withdrawal threshold. SJD could also reduce synovial inflammation, reduced the concentrations of interleukin-1ß (IL-1ß), IL-8, and COX-2 in the synovial fluid, and suppressed the expression of IL1B, CXCL8, and PTGS2 mRNA in the synovial tissue. Conclusion: SJD has a good anti-inflammatory effect to treat GA attacks, by acting on target genes such as IL-1ß, PTGS2, and CXCL8.


Assuntos
Medicamentos de Ervas Chinesas , Farmacologia em Rede , Humanos , Animais , Ratos , Simulação de Acoplamento Molecular , Ciclo-Oxigenase 2 , Exacerbação dos Sintomas , Bases de Dados Genéticas , Anti-Inflamatórios/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Medicina Tradicional Chinesa
2.
Am J Physiol Regul Integr Comp Physiol ; 325(5): R490-R503, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37545421

RESUMO

The biological clock is an invisible "clock" in the organism, which can regulate behavior, physiology, and biochemical reactions. However, the relationship between clock genes and energy metabolism in postexercise skeletal muscle is not well known. The purpose of this study was to determine the mechanisms through which peripheral clock genes regulate energy metabolism in skeletal muscle. We analyzed the rhythm of mRNA expression of the clock genes Bmal1 and Clock in skeletal muscle following heavy-load exercise and measured related indicators of mitochondrial structure and function. We obtained the following experimental results. First, heavy-load exercise induced loss of circadian rhythm of Bmal1 between ZT0 and ZT24, and the circadian rhythm of Clock was not restored between ZT0 and ZT72. Second, analysis of mitochondrial morphology in group E showed abnormal swelling and ridge structure damage at ZT0, which recovered somewhat at ZT24 and ZT48, and the damage had essentially disappeared by ZT72. Third, the expression of NAMPT/NAD+/SIRT1 signaling axis proteins in group E was abnormal at ZT0, the content of NAMPT and the activity of SIRT1 significantly increased, and the content of NAD+ significantly decreased. Fourth, the expression of BMAL1 and PGC-1α in group E significantly increased, whereas the ATP and ADP content, as well as the activities of COXII and COXIV, were significantly changed. Finally, the colocalization of BMAL1 and SIRT1 in group E was significantly upregulated at ZT0. These results suggest that the skeletal muscle clock gene Bmal1 may regulate the energy metabolism level of skeletal muscle after exercise through the NAMPT/NAD+/SIRT1 signaling pathway.


Assuntos
NAD , Sirtuína 1 , Sirtuína 1/genética , Sirtuína 1/metabolismo , NAD/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Ritmo Circadiano/genética , Metabolismo Energético , Músculo Esquelético/metabolismo
3.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 38(3): 220-226, 2022 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-36062789

RESUMO

Objective: To investigate the role of clock gene BMAL1 in exercise-induced skeletal muscle injury recovery. Methods: Two hundred and eight 8-week-old SD rats were randomly divided into the control group (Group C, n=104) and the exercise group (Group E, n=104). Group E performed a 90-minute downhill run on the treadmill. After exercise, the gastrocnemius muscle of 8 rats in Group C and Group E were collected at 0 h, 6 h, 12 h, 18 h, 24 h, 30 h, 36 h, 42 h, 48 h, 54 h, 60 h, 66 h and 72 h. The expression of skeletal muscle core clock gene, BMAL1 was measured by real-time fluorescence quantitative PCR. The parameters of fitting cosine curve were obtained by cosine analysis software circacompare (R package), and the change trend of rhythmic oscillation was analyzed. The ultrastructure of skeletal muscle fibers was observed by transmission electron microscope. The expressions of skeletal muscle BMAL1 and DESMIN were detected by Western blot; Immunofluorescence was used to observe the localization and contents of BMAL1 and DESMIN. Results: In Group C, three complete circadian rhythm cycles of mRNA BMAL1 were observed within 72 hours; in Group E, the circadian rhythm of BMAL1 mRNA disappeared at 0 h~24 h. Compared with Group C, the expression level of BMAL1 mRNA was significantly increased at 0 h, 6 h, 12 h, and 18 h after exercise in Group E (P<0.05), and the expression of BMAL1 protein was significantly increased at 0 h and 12 h after exercise(P<0.05), and recovered to the level of that in Group C from 24 h to 72 h(P>0.05). The expression of DESMIN protein was decreased at 0 h and 12 h after exercise(P<0.05), gradually increased at 24 h, increased significantly at 48 h(P<0.01), and recovered to the control level at 72 h (P>0.05). In Group E, BMAL1 and DESMIN were co-localized at 0 h, 12 h, and 24 h after exercise; the colocalization at 0 h~24 h showed a trend of first decreasing and then increasing, and the fluorescence intensity at 24 h reached the highest value. Conclusion: The post-exercise clock gene BMAL1 may be involved in the enhanced synergy of regulating the cytoskeletal protein DESMIN, it is thus related to the promotion of muscle fiber structure recovery.


Assuntos
Fatores de Transcrição ARNTL , Músculo Esquelético , Condicionamento Físico Animal , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Desmina/metabolismo , Músculo Esquelético/lesões , Músculo Esquelético/fisiologia , Condicionamento Físico Animal/efeitos adversos , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...