Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Leukoc Biol ; 116(1): 103-117, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38660893

RESUMO

It has been found that CD226 plays an important role in regulating macrophage function, but its expression and function in macrophages during renal fibrogenesis have not been studied. Our data demonstrated that CD226 expression in macrophages was obviously upregulated in the unilateral ureteral obstruction model, while CD226 deficiency attenuated collagen deposition in renal interstitium along with fewer M1 within renal cortex and renal medulla and a lower level of proinflammatory factors compared to that of control littermates. Further studies demonstrated that Cd226-/- bone marrow-derived macrophages transferring could significantly reduce the tubular injury, collagen deposition, and proinflammatory cytokine secretion compared with that of Cd226+/+ bone marrow-derived macrophages transferring in the unilateral ureteral obstruction model. Mechanistic investigations revealed that CD226 promoted proinflammatory M1 macrophage accumulation in the kidney via suppressing KLF4 expression in macrophages. Therefore, our results uncovered a pathogenic role of CD226 during the development of chronic kidney disease by promoting monocyte infiltration from peripheral blood into the kidney and enhancing macrophage activation toward the inflammatory phenotype by suppressing KLF4 expression.


Assuntos
Antígenos de Diferenciação de Linfócitos T , Movimento Celular , Fibrose , Fator 4 Semelhante a Kruppel , Ativação de Macrófagos , Macrófagos , Animais , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Antígenos de Diferenciação de Linfócitos T/metabolismo , Camundongos Endogâmicos C57BL , Rim/patologia , Rim/metabolismo , Rim/imunologia , Masculino , Obstrução Ureteral/patologia , Camundongos Knockout , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo
2.
Adv Mater ; 36(21): e2308921, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588501

RESUMO

Intrauterine adhesion (IUA) is characterized by the formation of fibrous scar tissue within the uterine cavity, which significantly impacts female reproductive health and even leads to infertility. Unfortunately, severe cases of IUA currently lack effective treatments. This study presents a novel approach that utilizes tumor necrosis factor-(TNF) stimulated gene 6 (TSG6)-modified exosomes (Exos) in conjunction with an injectable thermosensitive hydrogel (CS/GP) to mitigate the occurrence of IUA by reducing endometrium fibrosis in a mouse IUA model. This study demonstrate that TSG6-modified Exos effectively inhibits the activation of inflammatory M1-like macrophages during the initial stages of inflammation and maintains the balance of macrophage phenotypes (M1/M2) during the repair phase. Moreover, TSG6 inhibits the interaction between macrophages and endometrial stromal fibroblasts, thereby preventing the activation of stromal fibroblasts into myofibroblasts. Furthermore, this research indicates that CS/GP facilitates the sustained release of TSG6-modified Exos, leading to a significant reduction in both the manifestations of IUA and the extent of endometrium fibrosis. Collectively, through the successful construction of CS/GP loaded with TSG6-modified Exos, a reduction in the occurrence and progression of IUA is achieved by mitigating endometrium fibrosis. Consequently, this approach holds promise for the treatment of IUA.


Assuntos
Moléculas de Adesão Celular , Modelos Animais de Doenças , Endométrio , Exossomos , Fibrose , Hidrogéis , Ativação de Macrófagos , Animais , Feminino , Endométrio/patologia , Endométrio/metabolismo , Camundongos , Moléculas de Adesão Celular/metabolismo , Hidrogéis/química , Exossomos/metabolismo , Exossomos/química , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Aderências Teciduais/prevenção & controle , Células RAW 264.7
3.
FASEB J ; 37(8): e23047, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37392373

RESUMO

Diabetic cardiomyopathy (DCM) is one of the main complications in type I diabetic patients. Activated macrophage is critical for directing the process of inflammation during the development of DCM. The present study focused on the roles of CD226 on macrophage function during the DCM progression. It has been found that the number of cardiac macrophages in the hearts of streptozocin (STZ)-induced diabetes mice was significantly increased compared with that in non-diabetes mice, and the expression level of CD226 on cardiac macrophages in STZ-induced diabetes mice was higher than that in non-diabetes mice. CD226 deficiency attenuated the diabetes-induced cardiac dysfunction and decreased the proportion of CD86+ F4/80+ macrophages in the diabetic hearts. Notably, adoptive transfer of Cd226-/- - bone marrow derived macrophages (BMDMs) alleviated diabetes-induced cardiac dysfunction, which may be due to the attenuated migration capacity of Cd226-/- -BMDM under high glucose stimulation. Furthermore, CD226 deficiency decreased the macrophage glycolysis accompanying by the downregulated hexokinase 2 (HK2) and lactate dehydrogenase A (LDH-A) expression. Taken together, these findings revealed the pathogenic roles of CD226 played in the process of DCM and provided a basis for the treatment of DCM.


Assuntos
Antígenos de Diferenciação de Linfócitos T , Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Animais , Camundongos , Diabetes Mellitus Experimental/complicações , Glicólise , Coração , Macrófagos , Antígenos de Diferenciação de Linfócitos T/genética
4.
J Nanobiotechnology ; 21(1): 1, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36593461

RESUMO

BACKGROUND: Microgravity directly disturbs the reorganization of the cytoskeleton, exerting profound effects on the physiological process of macrophages. Although it has been established that macrophage M1/M2 polarization could be manipulated by the surface nanostructure of biomaterial in our previous study under normal gravity, how will inflammatory monocytes (iMos)-derived macrophages respond to diverse nanostructured Ti surfaces under normal gravity or microgravity remains unrevealed. RESULTS: In this study, Cytochalasin D, a cytoskeleton relaxant, was employed to establish the simulated microgravity (SMG) environment. Our results showed that human iMos polarized into M2c macrophages on NT5 surface but M1 type on NT20 surface with divergent inflammatory phenotypes according to the profile of macrophage polarization featured molecules under normal gravity. However, such manipulative effects of NTs surfaces on iMos-derived macrophages were strikingly weakened by SMG, characterized by the altered macrophage morphology, changed cytokine secretion profile, and decreased cell polarization capacity. CONCLUSIONS: To our knowledge, this is the first metallic implantable material study focusing on the functions of specific monocyte subsets and its crucial role of the cytoskeleton in materials-mediated host immune response, which enriches our mechanism knowledge about the crosstalk between immunocytes and biomaterials. The results obtained in the present study may also provide potential targets and strategies for biomaterial development and clinical treatment via precise immune-regulation under normal gravity and microgravity.


Assuntos
Monócitos , Nanoestruturas , Humanos , Nanoestruturas/química , Materiais Biocompatíveis , Citoesqueleto
5.
J Nanobiotechnology ; 20(1): 110, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35248085

RESUMO

BACKGROUND: Periodontitis is characterized by progressive inflammation and alveolar bone loss resulting in tooth loss finally. Macrophages including pro-inflammatory M1-like macrophages and reparative M2-like macrophages play a vital role in inflammation and tissue homeostasis in periodontitis. Among them, reparative M2-like macrophages have been shown to promote tissue repair and prevent bone loss. However, the mechanism of reparative M2 macrophages-induced osteoprotective effect remains elusive. RESULTS: Exosomes from reparative M2-like macrophages (M2-Exos) were isolated and identified successfully. M2-Exos could promote bone marrow stromal cells (BMSCs) osteogenic differentiation while suppressing bone marrow derived macrophage (BMDM) osteoclast formation, and prohibit pathological alveolar bone resorption because of the intercellular communication via exosomes. High expression level of IL-10 mRNA was detected not only in reparative M2-like macrophages but also in M2-Exos. Meanwhile, IL-10 expression level in BMSCs or BMDM was also upregulated significantly after co-culturing with M2-Exos in a concentration-dependent manner. In vitro, recombinant IL-10 proteins had the ability to selectively promote osteogenic differentiation of BMSCs and hinder osteoclast differentiation of BMDM. Moreover, after treatment with M2-Exos and IL-10R antibody together, the capacity of promoting osteogenesis and suppressing osteoclastogenesis of M2-Exos was significantly reversed. In vivo experiments further showed that M2-Exos reduced alveolar bone resorption in mice with periodontitis via IL-10/IL-10R pathway. CONCLUSION: In conclusion, our results demonstrate that the reparative M2-like macrophages could promote osteogenesis while inhibiting osteoclastogenesis in vitro as well as protect alveolar bone against resorption in vivo significantly. M2-Exos could upregulate the IL-10 cytokines expression of BMSCs and BMDM via delivering exosomal IL-10 mRNA to cells directly, leading to activation of the cellular IL-10/IL-10R pathway to regulate cells differentiation and bone metabolism. These results might partly account for the mechanism of osteoprotective effect of reparative M2-like macrophages and provide a novel perspective and a potential therapeutic approach on improving alveolar resorption by M2-Exos.


Assuntos
Exossomos , Periodontite , Animais , Diferenciação Celular , Exossomos/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Macrófagos/metabolismo , Camundongos , Osteogênese , Periodontite/metabolismo , RNA Mensageiro/metabolismo
6.
Cell Stress Chaperones ; 26(6): 937-944, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34495492

RESUMO

Human periodontal ligament fibroblast (HPDLF) is a major component of the resident cells in the periodontal microenvironment, and plays important roles in periodontitis through multiple mechanisms. Although lipopolysaccharide (LPS) has been shown to cause endoplasmic reticulum (ER) stress and activate the unfolded protein response (UPR) in HPDLF, the mechanisms governing HPDLF function in periodontitis are unclear. In this study, we tested the ability of unfolded protein response (UPR) to regulate HPDLF in vitro and examined the underlying mechanisms. We found LPS-pretreated HPDLF induced macrophage polarization toward M1 phenotype. UPR activation reduced the inflammatory cytokine production and downregulated the expression of TLR4 in HPDLF. The phosphorylation of NF-κB p65 and I-κB was also inhibited by UPR activation. Our findings demonstrate that the connection of LPS, UPR, and HPDLF may represent a new concrete theory of innate immunity regulation in periodontal diseases, and suggest that targeting of UPR in HPDLF may be developed as a potent therapy for periodontitis.


Assuntos
Inflamação/genética , Ligamento Periodontal/metabolismo , Periodontite/genética , Resposta a Proteínas não Dobradas/genética , Polaridade Celular/genética , Microambiente Celular/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Imunidade Inata/genética , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Macrófagos/patologia , NF-kappa B/genética , Ligamento Periodontal/patologia , Periodontite/terapia , Fosforilação , Fator de Transcrição RelA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...