Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 93(10): 103303, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319340

RESUMO

D-Pace has a Penning ion source that runs with helium for studies of α-particle production. We want to study its plasma properties as a function of varying operational parameters, which results in varied output ion beam characteristics. In order to diagnose the ion source plasma, a collisional-radiative code for helium to be used with optical emission spectroscopy measurements is developed. This has the advantage of being non-invasive, which allows for measurements using the emitted light from the plasma. This collisional-radiative code is shown to compare well with the Yacora on the Web model developed at IPP-Garching, and improves upon it with the addition of radiation trapping. Furthermore, the sensitivity of this model to the inclusion of additional excited state populations and non-Maxwellian electron energy distribution functions is investigated. It is shown that non-Maxwellian distributions can significantly affect spectroscopy measurements. This diagnostic is benchmarked to Langmuir probe measurements on the TRIUMF-licensed volume-cusp ion source to determine whether it can replicate the measured electron density and electron temperature as a function of varied operational parameters. The operational parameters are helium gas flow (10-40 SCCM), arc voltage (100-200 V), and arc current (1-5 A). The measured plasma properties, while different in absolute value, have similar trends for each operational parameter except when varying arc voltage. It is shown that this mismatch as a function of arc voltage is likely due to high energy non-Maxwellian electrons from the cathode sheath, which are not included within the collisional-radiative model.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(2 Pt 2): 026402, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16605460

RESUMO

Enhanced electron trapping using plasma density down-ramps as a method for improving the performance of laser injection schemes is proposed and analyzed. A decrease in density implies an increase in plasma wavelength, which can shift a relativistic electron from the defocusing to the focusing region of the accelerating wakefield, and a decrease in wake phase velocity, which lowers the trapping threshold. The specific method of two-pulse colliding pulse injector is examined in detail using a three-dimensional test particle tracking code. A density down-ramp with a change of density on the order of tens of percent over distances greater than the plasma wavelength leads to an enhancement of charge by two orders in magnitude or more, up to the limits imposed by beam loading. The accelerated bunches are ultrashort (fraction of the plasma wavelength--e.g., approximately 5 fs), high charge ( > 20 pC at modest injection laser intensity approximately 10(17) W/cm(2)), with a relative energy spread of a few percent at a mean energy of approximately 25 MeV, and a normalized root-mean-square emittance of the order of 0.5 mm mrad.

3.
Phys Rev Lett ; 96(1): 014801, 2006 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-16486463

RESUMO

The temporal profile of relativistic laser-plasma-accelerated electron bunches has been characterized. Coherent transition radiation at THz frequencies, emitted at the plasma-vacuum boundary, was measured through electro-optic sampling. Frequencies up to the crystal detection limit of 4 THz were observed. Comparison between data and theory indicates that THz radiation from bunches with structure shorter than approximately = 50 fs (root-mean-square) is emitted. The measurement demonstrates both shot-to-shot stability of the laser-plasma accelerator and femtosecond synchronization between bunch and probe beam.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 70(1 Pt 2): 016402, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15324173

RESUMO

An electron injector concept that uses a single injection laser pulse colliding with a pump laser pulse in a plasma is analyzed. The pump pulse generates a large amplitude laser wakefield (plasma wave). The counterpropagating injection pulse collides with the pump laser pulse to generate a beat wave with a slow phase velocity. The ponderomotive force of the slow beat wave is responsible for injecting plasma electrons into the wakefield near the back of the pump pulse. Test particle simulations indicate that significant amounts of charge can be trapped and accelerated ( approximately 10 pC). For higher charge, beam loading limits the validity of the simulations. The accelerated bunches are ultrashort ( approximately 1 fs) with good beam quality (relative energy spread of a few percent at a mean energy of approximately 10 MeV and a normalized root-mean-square emittance on the order 0.4 mm mrad). The effects of interaction angle and polarization are also explored, e.g., efficient trapping can occur for near-collinear geometries. Beat wave injection using a single injection pulse has the advantages of simplicity, ease of experimental implementation, and requires modest laser intensity < 10(18) W/cm(2).

5.
Phys Rev Lett ; 91(7): 074802, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12935022

RESUMO

Coherent radiation in the 0.3-3 THz range has been generated from femtosecond electron bunches at a plasma-vacuum boundary via transition radiation. The bunches produced by a laser-plasma accelerator contained 1.5 nC of charge. The THz energy per pulse within a limited 30 mrad collection angle was 3-5 nJ and scaled quadratically with bunch charge, consistent with coherent emission. Modeling indicates that this broadband source produces about 0.3 microJ per pulse within a 100 mrad angle, and that increasing the transverse plasma size and electron beam energy could provide more than 100 microJ/pulse.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...