Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(1): e0272423, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38095474

RESUMO

IMPORTANCE: The capacity to utilize myo-inositol (MI) as sole carbon and energy source is widespread among bacteria, among them the intestinal pathogen S. Typhimurium. This study elucidates the complex and hierarchical regulation that underlies the utilization of MI by S. Typhimurium under substrate limitation. A total of seven regulatory factors have been identified so far, allowing the pathogen an environment-dependent, efficient, and fine-tuned regulation of a metabolic property that provides growth advantages in different environments.


Assuntos
Salmonella enterica , Salmonella enterica/metabolismo , Salmonella typhimurium/genética , Regiões Promotoras Genéticas , Proteínas de Bactérias/genética , Inositol/metabolismo , Redes e Vias Metabólicas , Regulação Bacteriana da Expressão Gênica
2.
Appl Environ Microbiol ; 89(6): e0003623, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37184385

RESUMO

The insecticidal toxin complex (Tc) proteins are produced by several insect-associated bacteria, including Yersinia enterocolitica strain W22703, which oscillates between two distinct pathogenicity phases in invertebrates and humans. The mechanism by which this high-molecular-weight toxin is released into the extracellular surrounding, however, has not been deciphered. In this study, we investigated the regulation and functionality of a phage-related holin/endolysin (HE) cassette located within the insecticidal pathogenicity island Tc-PAIYe of W22703. Using the Galleria mellonella infection model and luciferase reporter fusions, we revealed that quorum sensing contributes to the insecticidal activity of W22703 upon influencing the transcription of tcaR2, which encodes an activator of the tc and HE genes. In contrast, a lack of the Yersinia modulator, YmoA, stimulated HE gene transcription, and mutant W22703 ΔymoA exhibited a stronger toxicity toward insect larvae than did W22703. A luciferase reporter fusion demonstrated transcriptional activation of the HE cassette in vivo, and a significantly larger extracellular amount of subunit TcaA was found in W22703 ΔymoA relative to its ΔHE mutant. Using competitive growth assays, we demonstrated that at least in vitro, the TcaA release upon HE activity is not mediated by cell lysis of a significant part of the population. Oral infection of Caenorhabditis elegans with a HE deletion mutant attenuated the nematocidal activity of the wild type, similar to the case with a mutant lacking a Tc subunit. We conclude that the dual holin/endolysin cassette of yersiniae is a novel example of a phage-related function adapted for the release of a bacterial toxin. IMPORTANCE Members of the genus Yersinia cause gastroenteritis in humans but also exhibit toxicity toward invertebrates. A virulence factor required for this environmental life cycle stage is the multisubunit toxin complex (Tc), which is distinct from the insecticidal toxin of Bacillus thuringiensis and has the potential to be used in pest control. The mechanism by which this high-molecular-weight Tc is secreted from bacterial cells has not been uncovered. Here, we show that a highly conserved phage-related holin/endolysin pair, which is encoded by the genes holY and elyY located between the Tc subunit genes, is essential for the insecticidal activity of Y. enterocolitica and that its activation increases the amount of Tc subunits in the supernatant. Thus, the dual holY-elyY cassette of Y. enterocolitica constitutes a new example for a type 10 secretion system to release bacterial toxins.


Assuntos
Toxinas Bacterianas , Inseticidas , Mariposas , Yersinia enterocolitica , Animais , Humanos , Yersinia enterocolitica/genética , Caenorhabditis elegans/metabolismo , Mariposas/microbiologia , Toxinas Bacterianas/metabolismo , Insetos , Inseticidas/metabolismo , Luciferases , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
3.
BMC Biol ; 21(1): 76, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37038177

RESUMO

BACKGROUND: Escherichia coli is an opportunistic pathogen which colonizes various host species. However, to what extent genetic lineages of E. coli are adapted or restricted to specific hosts and the genomic determinants of such adaptation or restriction is poorly understood. RESULTS: We randomly sampled E. coli isolates from four countries (Germany, UK, Spain, and Vietnam), obtained from five host species (human, pig, cattle, chicken, and wild boar) over 16 years, from both healthy and diseased hosts, to construct a collection of 1198 whole-genome sequenced E. coli isolates. We identified associations between specific E. coli lineages and the host from which they were isolated. A genome-wide association study (GWAS) identified several E. coli genes that were associated with human, cattle, or chicken hosts, whereas no genes associated with the pig host could be found. In silico characterization of nine contiguous genes (collectively designated as nan-9) associated with the human host indicated that these genes are involved in the metabolism of sialic acids (Sia). In contrast, the previously described sialic acid regulon known as sialoregulon (i.e. nanRATEK-yhcH, nanXY, and nanCMS) was not associated with any host species. In vitro growth experiments with a Δnan-9 E. coli mutant strain, using the sialic acids 5-N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) as sole carbon source, showed impaired growth behaviour compared to the wild-type. CONCLUSIONS: This study provides an extensive analysis of genetic determinants which may contribute to host specificity in E. coli. Our findings should inform risk analysis and epidemiological monitoring of (antimicrobial resistant) E. coli.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Bovinos , Humanos , Suínos , Escherichia coli/genética , Estudo de Associação Genômica Ampla , Infecções por Escherichia coli/veterinária , Genômica , Ácidos Siálicos/metabolismo
4.
Cell Host Microbe ; 31(5): 734-750.e8, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37098342

RESUMO

Clostridioides difficile infections (CDIs) remain a healthcare problem due to high rates of relapsing/recurrent CDIs (rCDIs). Breakdown of colonization resistance promoted by broad-spectrum antibiotics and the persistence of spores contribute to rCDI. Here, we demonstrate antimicrobial activity of the natural product class of chlorotonils against C. difficile. In contrast to vancomycin, chlorotonil A (ChA) efficiently inhibits disease and prevents rCDI in mice. Notably, ChA affects the murine and porcine microbiota to a lesser extent than vancomycin, largely preserving microbiota composition and minimally impacting the intestinal metabolome. Correspondingly, ChA treatment does not break colonization resistance against C. difficile and is linked to faster recovery of the microbiota after CDI. Additionally, ChA accumulates in the spore and inhibits outgrowth of C. difficile spores, thus potentially contributing to lower rates of rCDI. We conclude that chlorotonils have unique antimicrobial properties targeting critical steps in the infection cycle of C. difficile.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Animais , Camundongos , Suínos , Vancomicina/farmacologia , Vancomicina/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Clostridium/tratamento farmacológico , Infecções por Clostridium/prevenção & controle
5.
PLoS Pathog ; 18(11): e1010991, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36399504

RESUMO

The human pathogen Yersinia enterocolitica strain W22703 is characterized by its toxicity towards invertebrates that requires the insecticidal toxin complex (Tc) proteins encoded by the pathogenicity island Tc-PAIYe. Molecular and pathophysiological details of insect larvae infection and killing by this pathogen, however, have not been dissected. Here, we applied oral infection of Galleria mellonella (Greater wax moth) larvae to study the colonisation, proliferation, tissue invasion, and killing activity of W22703. We demonstrated that this strain is strongly toxic towards the larvae, in which they proliferate by more than three orders of magnitude within six days post infection. Deletion mutants of the genes tcaA and tccC were atoxic for the insect. W22703 ΔtccC, in contrast to W22703 ΔtcaA, initially proliferated before being eliminated from the host, thus confirming TcaA as membrane-binding Tc subunit and TccC as cell toxin. Time course experiments revealed a Tc-dependent infection process starting with midgut colonisation that is followed by invasion of the hemolymph where the pathogen elicits morphological changes of hemocytes and strongly proliferates. The in vivo transcriptome of strain W22703 shows that the pathogen undergoes a drastic reprogramming of central cell functions and gains access to numerous carbohydrate and amino acid resources within the insect. Strikingly, a mutant lacking a phage-related holin/endolysin (HE) cassette, which is located within Tc-PAIYe, resembled the phenotypes of W22703 ΔtcaA, suggesting that this dual lysis cassette may be an example of a phage-related function that has been adapted for the release of a bacterial toxin.


Assuntos
Bacteriófagos , Mariposas , Yersinia enterocolitica , Animais , Humanos , Insetos , Larva
6.
Microbiol Spectr ; 10(4): e0201322, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35924911

RESUMO

Phytate is the main phosphorus storage molecule of plants and is therefore present in large amounts in the environment and in the diet of humans and animals. Its dephosphorylated form, the polyol myo-inositol (MI), can be used by bacteria as a sole carbon and energy source. The biochemistry and regulation of MI degradation were deciphered in Bacillus subtilis and Salmonella enterica, but a systematic survey of this catabolic pathway has been missing until now. For a comprehensive overview of the distribution of MI utilization, we analyzed 193,757 bacterial genomes, representing a total of 24,812 species, for the presence, organization, and taxonomic prevalence of inositol catabolic gene clusters (IolCatGCs). The genetic capacity for MI degradation was detected in 7,384 (29.8%) of all species for which genome sequences were available. IolCatGC-positive species were particularly found among Actinobacteria and Proteobacteria and to a much lesser extent in Bacteroidetes. IolCatGCs are very diverse in terms of gene number and functions, whereas the order of core genes is highly conserved on the phylum level. We predict that 111 animal pathogens, more than 200 commensals, and 430 plant pathogens or rhizosphere bacteria utilize MI, underscoring that IolCatGCs provide a growth benefit within distinct ecological niches. IMPORTANCE This study reveals that the capacity to utilize inositol is unexpectedly widespread among soil, commensal, and pathogenic bacteria. We assume that this yet-neglected metabolism plays a pivotal role in the microbial turnover of phytate and inositols. The bioinformatic tool established here enables predicting to which extent and genetic variance a bacterial determinant is present in all genomes sequenced so far.


Assuntos
Inositol , Solo , Animais , Bacillus subtilis/genética , Genoma Bacteriano , Humanos , Inositol/química , Inositol/metabolismo , Ácido Fítico
8.
Anim Microbiome ; 3(1): 24, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731218

RESUMO

BACKGROUND: Little is known about the complex interactions between the diet, the gut microbiota, and enteropathogens. Here, the impact of two specific diets on the composition of the mouse gut microbiota and on the transcriptional response of Salmonella Typhimurium (S. Typhimurium) was analyzed in an enteritis model. RESULTS: Mice were fed for two weeks a fibre-rich, plant-based diet (PD), or a Westernized diet (WD) rich in animal fat and proteins and in simple sugars, and then infected with an invasin-negative S. Typhimurium strain ST4/74 following streptomycin-treatment. Seventy-two hours post infection, fecal pathogen loads were equal in both diet groups, suggesting that neither of the diets had negatively influenced the ability of this ST4/74 strain to colonize and proliferate in the gut at this time point. To define its diet-dependent gene expression pattern, S. Typhimurium was immunomagnetically isolated from the gut content, and its transcriptome was analyzed. A total of 66 genes were more strongly expressed in mice fed the plant-based diet. The majority of these genes was involved in metabolic functions degrading substrates of fruits and plants. Four of them are part of the gat gene cluster responsible for the uptake and metabolism of galactitol and D-tagatose. In line with this finding, 16S rRNA gene amplicon analysis revealed higher relative abundance of bacterial families able to degrade fiber and nutritive carbohydrates in PD-fed mice in comparison with those nourished with a WD. Competitive mice infection experiments performed with strain ST4/74 and ST4/74 ΔSTM3254 lacking tagatose-1,6-biphosphate aldolase, which is essential for galactitol and tagatose utilization, did not reveal a growth advantage of strain ST4/74 in the gastrointestinal tract of mice fed plant-based diet as compared to the deletion mutant. CONCLUSION: A Westernized diet and a plant-based diet evoke distinct transcriptional responses of S. Typhimurium during infection that allows the pathogen to adapt its metabolic activities to the diet-derived nutrients. This study therefore provides new insights into the dynamic interplay between nutrient availability, indigenous gut microbiota, and proliferation of S. Typhimurium.

9.
J Bacteriol ; 203(5)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33288626

RESUMO

The Yersinia genus comprises pathogens that can adapt to an environmental life cycle stage as well as to mammals. Yersinia enterocolitica strain W22703 exhibits both insecticidal and nematocidal activity conferred by the tripartite toxin complex (Tc) that is encoded on the 19-kb pathogenicity island Tc-PAI Ye All tc genes follow a strict temperature regulation in that they are silenced at 37°C but activated at lower temperatures. Four highly conserved phage-related genes, located within the Tc-PAI Ye , were recently demonstrated to encode a biologically functional holin-endolysin gene cassette that lyses its own host W22703 at 37°C. Conditions transcriptionally activating the cassette are not yet known. In contrast to Escherichia coli, the overproduction of holin and endolysin did not result in cell lysis of strain W22703 at 15°C. When the holin-endolysin genes were overexpressed at 15°C in four Y. enterocolitica biovars and in four other Yersinia spp., a heterogenous pattern of phenotypes was observed, ranging from lysis resistance of a biovar 1A strain to the complete growth arrest of a Y. kristensenii strain. To decipher the molecular mechanism underlying this temperature-dependent lysis, we constructed a Lon protease-negative mutant of W22703 in which the overexpression of the lysis cassette leads to cell death at 15°C. Overexpressed endolysin exhibited a high proteolytic susceptibility in strain W22703 but remained stable in the W22703 Δlon strain or in Y. pseudotuberculosis Although artificial overexpression was applied here, the data indicate that Lon protease plays a role in the control of the temperature-dependent lysis in Y. enterocolitica W22703.IMPORTANCE The investigation of the mechanisms that help pathogens survive in the environment is a prerequisite to understanding their evolution and their virulence capacities. In members of the genus Yersinia, many factors involved in virulence, metabolism, motility, or biofilm formation follow a strict temperature-dependent regulation. While the molecular mechanisms underlying the activation of determinants at body temperature have been analyzed in detail, the molecular basis of low-temperature-dependent phenotypes is largely unknown. Here, we demonstrate that a novel phage-related lysis cassette, which is part of the insecticidal and nematocidal pathogenicity island of Y. enterocolitica, does not lyse its own host following overexpression at 15°C and that the Lon protease is involved in this phenotype.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriólise , Temperatura Baixa , Endopeptidases/metabolismo , Ilhas Genômicas , Protease La/metabolismo , Yersinia enterocolitica/patogenicidade , Animais , Caenorhabditis elegans/microbiologia , Sequência Conservada , Insetos/microbiologia , Virulência , Yersinia enterocolitica/enzimologia , Yersinia enterocolitica/genética
10.
J Mol Biol ; 431(23): 4732-4748, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31260689

RESUMO

Following ingestion, gastrointestinal pathogens compete against the gastrointestinal microbiota and overcome host immune defenses in order to cause infections. Besides employing direct killing mechanisms, the commensal microbiota occupies metabolic niches to outcompete invading pathogens. Salmonella enterica serovar Typhimurium (S. Typhimurium) uses several strategies to successfully colonize the gut and establish infection, of which an increasing number is based on phenotypic heterogeneity within the S. Typhimurium population. The utilization of myo-inositol (MI) and the production of colicin confer a selective advantage over the microbiota in terms of exploitative and interference competition, respectively. In this review, we summarize the genetic basis underlying bistability of MI catabolism and colicin production. As demonstrated by single-cell analyses, a stochastic switch in the expression of the genes responsible for colicin production and MI degradation constitutes the heterogeneity of the two phenotypes. Both genetic systems are tightly regulated to avoid their expression under non-appropriate conditions and possible detrimental effects on bacterial fitness. Moreover, evolutionary mechanisms underlying formation and stability of these phenotypes in S. Typhimurium are discussed. We propose that both MI catabolism and colicin production create a bet-hedging strategy, which provides an adaptive benefit for S. Typhimurium in the fluctuating environment of the mammalian gut.


Assuntos
Microbioma Gastrointestinal , Interações Microbianas , Salmonella/fisiologia , Evolução Biológica , Variação Biológica da População , Colicinas/biossíntese , Meio Ambiente , Regulação Bacteriana da Expressão Gênica , Redes e Vias Metabólicas , Fenótipo
11.
Microb Cell Fact ; 18(1): 32, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30732610

RESUMO

BACKGROUND: Serratia plymuthica WS3236 was selected for whole genome sequencing based on preliminary genetic and chemical screening indicating the presence of multiple natural product pathways. This led to the identification of a putative sodorifen biosynthetic gene cluster (BGC). The natural product sodorifen is a volatile organic compound (VOC) with an unusual polymethylated hydrocarbon bicyclic structure (C16H26) produced by selected strains of S. plymuthica. The BGC encoding sodorifen consists of four genes, two of which (sodA, sodB) are homologs of genes encoding enzymes of the non-mevalonate pathway and are thought to enhance the amounts of available farnesyl pyrophosphate (FPP), the precursor of sodorifen. Proceeding from FPP, only two enzymes are necessary to produce sodorifen: an S-adenosyl methionine dependent methyltransferase (SodC) with additional cyclisation activity and a terpene-cyclase (SodD). Previous analysis of S. plymuthica found sodorifen production titers are generally low and vary significantly among different producer strains. This precludes studies on the still elusive biological function of this structurally and biosynthetically fascinating bacterial terpene. RESULTS: Sequencing and mining of the S. plymuthica WS3236 genome revealed the presence of 38 BGCs according to antiSMASH analysis, including a putative sodorifen BGC. Further genome mining for sodorifen and sodorifen-like BGCs throughout bacteria was performed using SodC and SodD as queries and identified a total of 28 sod-like gene clusters. Using direct pathway cloning (DiPaC) we intercepted the 4.6 kb candidate sodorifen BGC from S. plymuthica WS3236 (sodA-D) and transformed it into Escherichia coli BL21. Heterologous expression under the control of the tetracycline inducible PtetO promoter firmly linked this BGC to sodorifen production. By utilizing this newly established expression system, we increased the production yields by approximately 26-fold when compared to the native producer. In addition, sodorifen was easily isolated in high purity by simple head-space sampling. CONCLUSIONS: Genome mining of all available genomes within the NCBI and JGI IMG databases led to the identification of a wealth of sod-like pathways which may be responsible for producing a range of structurally unknown sodorifen analogs. Introduction of the S. plymuthica WS3236 sodorifen BGC into the fast-growing heterologous expression host E. coli with a very low VOC background led to a significant increase in both sodorifen product yield and purity compared to the native producer. By providing a reliable, high-level production system, this study sets the stage for future investigations of the biological role and function of sodorifen and for functionally unlocking the bioinformatically identified putative sod-like pathways.


Assuntos
Compostos Bicíclicos com Pontes/metabolismo , Escherichia coli/metabolismo , Família Multigênica , Octanos/metabolismo , Serratia/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Clonagem Molecular , Biologia Computacional , Escherichia coli/genética , Genoma Bacteriano , Pirofosfatases/metabolismo
12.
Sci Rep ; 8(1): 17739, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30531898

RESUMO

Small noncoding RNAs (sRNAs) with putative regulatory functions in gene expression have been identified in the enteropathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). Two sRNAs are encoded by the genomic island GEI4417/4436 responsible for myo-inositol (MI) degradation, suggesting a role in the regulation of this metabolic pathway. We show that a lack of the sRNA STnc2160, termed RssR, results in a severe growth defect in minimal medium (MM) with MI. In contrast, the second sRNA STnc1740 was induced in the presence of glucose, and its overexpression slightly attenuated growth in the presence of MI. Constitutive expression of RssR led to an increased stability of the reiD mRNA, which encodes an activator of iol genes involved in MI utilization, via interaction with its 5'-UTR. SsrB, a response regulator contributing to the virulence properties of salmonellae, activated rssR transcription by binding the sRNA promoter. In addition, the absence of the RNA chaperone Hfq resulted in strongly decreased levels of RssR, attenuated S. Typhimurium growth with MI, and reduced expression of several iol genes required for MI degradation. Considered together, the extrinsic RssR allows fine regulation of cellular ReiD levels and thus of MI degradation by acting on the reiD mRNA stability.


Assuntos
Proteínas de Bactérias/genética , Inositol/genética , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Salmonella enterica/genética , Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/genética , Ilhas Genômicas/genética , Redes e Vias Metabólicas/genética , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , Salmonella typhimurium/genética , Fatores de Transcrição/genética , Ativação Transcricional/genética , Virulência/genética
13.
Artigo em Inglês | MEDLINE | ID: mdl-30488025

RESUMO

The genus Yersinia comprises 19 species of which three are known as human and animal pathogens. Some species display toxicity toward invertebrates using the so-called toxin complex (TC) and/or determinants that are not yet known. Recent studies showed a remarkable variability of insecticidal activities when representatives of different Yersinia species (spp.) were subcutaneously injected into the greater wax moth, Galleria mellonella. Here, we demonstrate that Y. intermedia and Y. frederiksenii are highly toxic to this insect. A member of Y. Enterocolitica phylogroup 1B killed G. mellonella larvae with injection doses of approximately 38 cells only, thus resembling the insecticidal activity of Photorhabdus luminescens. The pathogenicity Yersinia spp. displays toward the larvae was higher at 15°C than at 30°C and independent of the TC. However, upon subtraction of all genes of the low-pathogenic Y. enterocolitica strain W22703 from the genomes of Y. intermedia and Y. frederiksenii, we identified a set of genes that may be responsible for the toxicity of these two species. Indeed, a mutant of Y. frederiksenii lacking yacT, a gene that encodes a protein similar to the heat-stable cytotonic enterotoxin (Ast) of Aeromonas hydrophila, exhibited a reduced pathogenicity toward G. mellonella larvae and altered the morphology of hemocytes. The data suggests that the repertoire of virulence determinants present in environmental Yersinia species remains to be elucidated.


Assuntos
Toxinas Bacterianas/toxicidade , Enterotoxinas/toxicidade , Yersiniose/microbiologia , Yersinia/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Enterotoxinas/genética , Genes Bacterianos/genética , Larva/efeitos dos fármacos , Mariposas/efeitos dos fármacos , Mariposas/microbiologia , Mutação , Fenótipo , Photorhabdus , Temperatura , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/toxicidade , Yersinia/genética , Yersinia/patogenicidade
14.
J Bacteriol ; 200(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29866807

RESUMO

Yersinia enterocolitica is a pathogen that causes gastroenteritis in humans. Because of its low-temperature-dependent insecticidal activity, it can oscillate between invertebrates and mammals as host organisms. The insecticidal activity of strain W22703 is associated with a pathogenicity island of 19 kb (Tc-PAI Ye ), which carries regulators and genes encoding the toxin complex (Tc). The island also harbors four phage-related and highly conserved genes of unknown functions, which are polycistronically transcribed. Two open reading frames showed significant homologies to holins and endolysins and exhibited lytic activity in Escherichia coli cells upon overexpression. When a set of Yersinia strains was tested in an equivalent manner, highly diverse susceptibilities to lysis were observed, and some strains were resistant to lysis. If cell lysis occurred (as demonstrated by membrane staining), it was more pronounced when two accessory elements of the cassette coding for an i-spanin and an o-spanin were included in the overexpression construct. The pore-forming function of the putative holin, HolY, was demonstrated by complementation of the lysis defect of a phage λ S holin mutant. In experiments performed with membrane preparations, ElyY exhibited high specificity for W22703 peptidoglycan, with a cleavage activity resembling that of lysozyme. Although the functionality of the lysis cassette from Tc-PAI Ye was demonstrated in this study, its biological role remains to be elucidated.IMPORTANCE The knowledge of how pathogens survive in the environment is pivotal for our understanding of bacterial virulence. The insecticidal and nematocidal activity of Yersinia spp., by which the bacteria gain access to nutrients and thus improve their environmental fitness, is conferred by the toxin complex (Tc) encoded on a highly conserved pathogenicity island termed Tc-PAI Ye While the regulators and the toxin subunits of the island had been characterized in some detail, the role of phage-related genes within the island remained to be elucidated. Here, we demonstrate that this cassette encodes a holin, an endolysin, and two spanins that, at least upon overexpression, lyse Yersinia strains.


Assuntos
Endopeptidases/genética , Regulação Bacteriana da Expressão Gênica , Ilhas Genômicas , Proteínas Virais/genética , Yersinia enterocolitica/genética , Sequência de Aminoácidos , Bacteriófagos/genética , Fases de Leitura Aberta , Yersinia enterocolitica/patogenicidade
15.
Sci Rep ; 7(1): 17821, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29259308

RESUMO

The human pathogen L. monocytogenes and the animal pathogen L. ivanovii, together with four other species isolated from symptom-free animals, form the "Listeria sensu stricto" clade. The members of the second clade, "Listeria sensu lato", are believed to be solely environmental bacteria without the ability to colonize mammalian hosts. To identify novel determinants that contribute to infection by L. monocytogenes, the causative agent of the foodborne disease listeriosis, we performed a genome comparison of the two clades and found 151 candidate genes that are conserved in the Listeria sensu stricto species. Two factors were investigated further in vitro and in vivo. A mutant lacking an ATP-binding cassette transporter exhibited defective adhesion and invasion of human Caco-2 cells. Using a mouse model of foodborne L. monocytogenes infection, a reduced number of the mutant strain compared to the parental strain was observed in the small intestine and the liver. Another mutant with a defective 1,2-propanediol degradation pathway showed reduced persistence in the stool of infected mice, suggesting a role of 1,2-propanediol as a carbon and energy source of listeriae during infection. These findings reveal the relevance of novel factors for the colonization process of L. monocytogenes.


Assuntos
Listeria monocytogenes/genética , Listeriose/microbiologia , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Células CACO-2 , Linhagem Celular Tumoral , Feminino , Doenças Transmitidas por Alimentos/genética , Doenças Transmitidas por Alimentos/microbiologia , Humanos , Listeriose/genética , Camundongos , Camundongos Endogâmicos BALB C , Virulência/genética
16.
Sci Rep ; 7: 44362, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28290506

RESUMO

Growth of Salmonella enterica serovar Typhimurium strain 14028 with myo-inositol (MI) is characterized by a bistable phenotype that manifests with an extraordinarily long (34 h) and variable lag phase. When cells were pre-grown in minimal medium with MI, however, the lag phase shortened drastically to eight hours, and to six hours in the absence of the regulator IolR. To unravel the molecular mechanism behind this phenomenon, we investigated this repressor in more detail. Flow cytometry analysis of the iolR promoter at a single cell level demonstrated bistability of its transcriptional activation. Electrophoretic mobility shift assays were used to narrow the potential binding region of IolR and identified at least two binding sites in most iol gene promoters. Surface plasmon resonance spectroscopy quantified IolR binding and indicated its putative oligomerization and high binding affinity towards specific iol gene promoters. In competitive assays, the iolR deletion mutant, in which iol gene repression is abolished, showed a severe growth disadvantage of ~15% relative to the parental strain in rich medium. We hypothesize that the strong repression of iol gene transcription is required to maintain a balance between metabolic flexibility and fitness costs, which follow the inopportune induction of an unusual metabolic pathway.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Inositol/farmacologia , Proteínas Repressoras/genética , Salmonella typhimurium/efeitos dos fármacos , Ativação Transcricional , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Meios de Cultura/química , Meios de Cultura/farmacologia , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli/genética , Escherichia coli/metabolismo , Deleção de Genes , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Inositol/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Ressonância de Plasmônio de Superfície
17.
J Bacteriol ; 199(4)2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27956522

RESUMO

Galactitol degradation by salmonellae remains underinvestigated, although this metabolic capability contributes to growth in animals (R. R. Chaudhuri et al., PLoS Genet 9:e1003456, 2013, https://doi.org/10.1371/journal.pgen.1003456). The genes responsible for this metabolic capability are part of a 9.6-kb gene cluster that spans from gatY to gatR (STM3253 to STM3262) and encodes a phosphotransferase system, four enzymes, and a transporter of the major facilitator superfamily. Genome comparison revealed the presence of this genetic determinant in nearly all Salmonella strains. The generation time of Salmonella enterica serovar Typhimurium strain ST4/74 was higher in minimal medium with galactitol than with glucose. Knockout of STM3254 and gatC resulted in a growth-deficient phenotype of S Typhimurium, with galactitol as the sole carbon source. Partial deletion of gatR strongly reduced the lag phase of growth with galactitol, whereas strains overproducing GatR exhibited a near-zero growth phenotype. Luciferase reporter assays demonstrated strong induction of the gatY and gatZ promoters, which control all genes of this cluster except gatR, in the presence of galactitol but not glucose. Purified GatR bound to these two main gat gene cluster promoters as well as to its own promoter, demonstrating that this autoregulated repressor controls galactitol degradation. Surface plasmon resonance spectroscopy revealed distinct binding properties of GatR toward the three promoters, resulting in a model of differential gat gene expression. The cyclic AMP receptor protein (CRP) bound these promoters with similarly high affinities, and a mutant lacking crp showed severe growth attenuation, demonstrating that galactitol utilization is subject to catabolite repression. Here, we provide the first genetic characterization of galactitol degradation in Salmonella, revealing novel insights into the regulation of this dissimilatory pathway. IMPORTANCE: The knowledge of how pathogens adapt their metabolism to the compartments encountered in hosts is pivotal to our understanding of bacterial infections. Recent research revealed that enteropathogens have adapted specific metabolic pathways that contribute to their virulence properties, for example, by helping to overcome limitations in nutrient availability in the gut due to colonization resistance. The capability of Salmonella enterica serovar Typhimurium to degrade galactitol has already been demonstrated to play a role in vivo, but it has not been investigated so far on the genetic level. To our knowledge, this is the first molecular description of the galactitol degradation pathway of a pathogen.


Assuntos
Proteínas de Bactérias/metabolismo , Galactitol/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Salmonella typhimurium/metabolismo , Proteínas de Bactérias/genética , Clonagem Molecular , DNA Bacteriano/genética , Família Multigênica , Regiões Promotoras Genéticas , Ligação Proteica , Salmonella typhimurium/genética
18.
Microbiologyopen ; 6(2)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28027601

RESUMO

Growth of Salmonella enterica serovar Typhimurium strain 14028 with myo-inositol (MI) as the sole carbon and energy source is characterized by a bistable phenotype that manifests in a growth phenotype with an extraordinarily long and length-variable lag phase. However, in the presence of hydrogen carbonate, in the absence of IolR that represses the MI degradation pathway, or if cells are already adapted to minimal medium (MM) with MI, the lag phase is drastically shortened, and the bistable phenotype is abolished. We hypothesized that memory development or hysteresis is a further characteristic of MI degradation by S. Typhimurium; therefore, we investigated the transition from a short to a long lag phase in more detail. Growth experiments demonstrated that memory on the population level is successively lost within approximately 8 hr after cells, which had been adapted to MI utilization, were transferred to lysogeny broth (LB) medium. Flow cytometry (FC) analysis using a chromosomal fusion to PiolE , a promoter controlling the expression of the enzymatic genes iolE and iolG involved in MI degradation, indicated a gradual reversion within a few hours from a population in the "ON" status with respect to iolE transcription to one that is mainly in the "OFF" status. Growth and FC experiments revealed that IolR does not affect hysteresis.


Assuntos
Metabolismo Energético/genética , Inositol/metabolismo , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/genética , Proteínas de Bactérias/genética , Bicarbonatos/metabolismo , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Salmonella typhimurium/metabolismo
19.
Angew Chem Int Ed Engl ; 55(47): 14852-14857, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27782347

RESUMO

Gram-negative bacteria represent a challenging task for antibacterial drug discovery owing to their impermeable cell membrane and restricted uptake of small molecules. We herein describe the synthesis of natural-product-derived epoxycyclohexenones and explore their antibiotic activity against several pathogenic bacteria. A compound with activity against Salmonella Typhimurium was identified, and the target enzymes were unraveled by quantitative chemical proteomics. Importantly, two protein hits were linked to bacterial stress response, and corresponding assays revealed an elevated susceptibility to reactive oxygen species upon compound treatment. The consolidated inhibition of these targets provides a rationale for antibacterial activity and highlights epoxycyclohexenones as natural product scaffolds with suitable properties for killing Gram-negative Salmonella.


Assuntos
Antibacterianos/farmacologia , Benzoquinonas/farmacologia , Produtos Biológicos/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Benzoquinonas/síntese química , Benzoquinonas/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Estrutura Molecular
20.
Mol Microbiol ; 100(2): 315-27, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26699934

RESUMO

The nitrogen (N-) sources and the relative contribution of a nitrogenous nutrient to the N-pool of the gram-positive pathogen Listeria monocytogenes are largely unknown. Therefore, (15) N-isotopologue profiling was established to study the N-metabolism of L. monocytogenes. The pathogen was grown in a defined minimal medium supplemented with potential (15) N-labeled nutrients. The bacteria were harvested and hydrolysed under acidic conditions, and the resulting amino acids were analysed by GC-MS, revealing (15) N-enrichments and isotopomeric compositions of amino acids. The differential (15) N-profiles showed the substantial and simultaneous usage of ammonium, glutamine, methionine, and, to a lower extent, the branched-chain amino acids valine, leucine, and isoleucine for anabolic purposes, with a significant preference for ammonium. In contrast, arginine, histidine and cysteine were directly incorporated into proteins. L. monocytogenes is able to replace glutamine with ethanolamine or glucosamine as amino donors for feeding the core N-metabolism. Perturbations of N-fluxes caused by gene deletions demonstrate the involvement of ethanolamine ammonia lyase, and suggest a role of the regulator GlnK of L. monocytogenes distinct from that of Escherichia coli. The metabolism of nitrogenous nutrients reflects the high flexibility of this pathogenic bacterium in exploiting N-sources that could also be relevant for its proliferation during infection.


Assuntos
Listeria monocytogenes/metabolismo , Nitrogênio/metabolismo , Aminoácidos/metabolismo , Isoleucina/metabolismo , Leucina/metabolismo , Listeria/metabolismo , Isótopos de Nitrogênio/análise , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...