Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cells ; 40(3): 273-289, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35356986

RESUMO

Insulin-like growth factor I (IGF-1) has been implicated in breast cancer due to its mitogenic and anti-apoptotic effects. Despite substantial research on the role of IGF-1 in tumor progression, the relationship of IGF-1 to tissue stem cells, particularly in mammary tissue, and the resulting tumor susceptibility has not been elucidated. Previous studies with the BK5.IGF-1 transgenic (Tg) mouse model reveals that IGF-1 does not act as a classical, post-carcinogen tumor promoter in the mammary gland. Pre-pubertal Tg mammary glands display increased numbers and enlarged sizes of terminal end buds, a niche for mammary stem cells (MaSCs). Here we show that MaSCs from both wild-type (WT) and Tg mice expressed IGF-1R and that overexpression of Tg IGF-1 increased numbers of MaSCs by undergoing symmetric division, resulting in an expansion of the MaSC and luminal progenitor (LP) compartments in pre-pubertal female mice. This expansion was maintained post-pubertally and validated by mammosphere assays in vitro and transplantation assays in vivo. The addition of recombinant IGF-1 promoted, and IGF-1R downstream inhibitors decreased mammosphere formation. Single-cell transcriptomic profiles generated from 2 related platforms reveal that IGF-1 stimulated quiescent MaSCs to enter the cell cycle and increased their expression of genes involved in proliferation, plasticity, tumorigenesis, invasion, and metastasis. This study identifies a novel, pro-tumorigenic mechanism, where IGF-1 increases the number of transformation-susceptible carcinogen targets during the early stages of mammary tissue development, and "primes" their gene expression profiles for transformation.


Assuntos
Fator de Crescimento Insulin-Like I , Glândulas Mamárias Animais , Animais , Proliferação de Células , Feminino , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Camundongos Transgênicos , Células-Tronco/metabolismo
2.
Oncogene ; 38(18): 3535-3550, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30651598

RESUMO

Female breast cancer (BrCa) is the most common noncutaneous cancer among women in the United States. Human epidemiological studies reveal that a p53 single-nucleotide polymorphism (SNP) at codon 72, encoding proline (P72) or arginine (R72), is associated with differential risk of several cancers, including BrCa. However, the molecular mechanisms by which these variants affect mammary tumorigenesis remain unresolved. To investigate the effects of this polymorphism on susceptibility to mammary cancer, we used a humanized p53 mouse model, homozygous for either P72 or R72. Our studies revealed that R72 mice had a significantly higher mammary tumor incidence and reduced latency in both DMBA-induced and MMTV-Erbb2/Neu mouse mammary tumor models compared to P72 mice. Analyses showed that susceptible mammary glands from E-R72 (R72 x MMTV-Erbb2/Neu) mice developed a senescence-associated secretory phenotype (SASP) with influx of proinflammatory macrophages, ultimately resulting in chronic, protumorigenic inflammation. Mammary tumors arising in E-R72 mice also had an increased influx of tumor-associated macrophages, contributing to angiogenesis and elevated tumor growth rates. These results demonstrate that the p53 R72 variant increased susceptibility to mammary tumorigenesis through chronic inflammation.


Assuntos
Carcinogênese/genética , Códon/genética , Polimorfismo de Nucleotídeo Único/genética , Proteína Supressora de Tumor p53/genética , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Carcinogênese/patologia , Modelos Animais de Doenças , Feminino , Humanos , Inflamação/genética , Inflamação/patologia , Macrófagos/patologia , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Transgênicos , Receptor ErbB-2/genética
3.
Biomacromolecules ; 17(11): 3790-3799, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27653640

RESUMO

Tumorigenic cell behaviors can be suppressed or enhanced by their physicochemical environment. As a first step toward developing materials that allow tumorigenic behaviors to be observed and manipulated, we cultured related MCF10 breast cell lines on fibers composed of the Drosophila protein Ultrabithorax (Ubx). These cell lines, originally derived from fibrocystic breast tissue, represent a continuum of tumorigenic behavior. Immortal but nontumorigenic MCF10A cells, as well as semitumorigenic MCF10AT cells, attached and spread on Ubx fibers. MCF10CA-1a cells, the most highly transformed line, secreted high concentrations of matrix metalloproteinases when cultured on Ubx materials, resulting in differences in cell attachment and cytoskeletal structure, and enabling invasive behavior. Because the mechanical and functional properties of Ubx fibers can be genetically manipulated, these materials provide a valuable tool for cancer research, allowing creation of diverse microenvironments that allow assessment of invasive, metastatic behavior.


Assuntos
Neoplasias da Mama/patologia , Técnicas de Cultura de Células , Linhagem Celular Tumoral/efeitos dos fármacos , Proteínas de Drosophila/química , Proteínas de Homeodomínio/química , Fatores de Transcrição/química , Animais , Drosophila melanogaster/química , Feminino , Humanos , Metástase Neoplásica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...