Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 151: 107669, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39067421

RESUMO

Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder worldwide, and the therapeutic is focused on several approaches including the inhibition of fibril formation by small compounds, avoiding the formation of cytotoxic oligomers. Thus, we decided to explore the capacity of compounds carrying catechol moieties to inhibit the progression of α-synuclein. Overall, the compounds rosmarinic acid (1), carnosic acid (2), carnosol (3), epiisorosmanol (4), and rosmanol (5) avoid the progression of fibril formation assessed by Thiofavine T (ThT), and atomic force microscopy images showed that morphology is influenced for the actions of compounds over fibrillization. Moreover, ITC experiments showed a Kd varying from 28 to 51 µM, the ΔG showed that the reaction between compounds and α-syn is spontaneous, and ΔH is associated with an exothermic reaction, suggesting the interactions of hydrogen bonds among compounds and α-syn. Docking experiments reinforce this idea showing the intermolecular interactions are mostly hydrogen bonding within the sites 2, 9, and 3/13 of α-synuclein, and compounds 1 and 5. Thus, compound 1, rosmarinic acid, interestingly interacts better with site 9 through catechol and Lysines. In cultured Raw 264. 7 cells, the presence of compounds showed that most of them can promote cell differentiation, especially rosmarinic acid, and rosmanol, both preserving tubulin cytoskeleton. However, once we evaluated whether or not the aggregates pre-treated with compounds could prevent the disruption of microtubules of Raw 264.7 cells, only pre-treated aggregates with rosmarinic acid prevented the disruption of the cytoskeleton. Altogether, we showed that especially rosmarinic acid not only inhibits α-syn but stabilizes the remaining aggregates turning them into not-toxic to Raw 264.7 cells suggesting a main role in cell survival and antigen processing in response to external α-syn aggregates.


Assuntos
Cinamatos , Depsídeos , Microtúbulos , Ácido Rosmarínico , alfa-Sinucleína , Depsídeos/farmacologia , Depsídeos/química , Depsídeos/isolamento & purificação , Cinamatos/química , Cinamatos/farmacologia , Cinamatos/síntese química , Animais , Camundongos , Células RAW 264.7 , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Estrutura Molecular , alfa-Sinucleína/metabolismo , alfa-Sinucleína/antagonistas & inibidores , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga , Sobrevivência Celular/efeitos dos fármacos , Simulação de Acoplamento Molecular
2.
Polymers (Basel) ; 16(7)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38611142

RESUMO

Penicillium digitatum is the causal agent of green mold, a primary postharvest disease of citrus fruits. This study evaluated the efficacy of a novel photoactive chitosan-riboflavin bioconjugate (CH-RF) to control green mold in vitro and in lemon fruit. The results showed total inhibition of P. digitatum growth on APDA supplemented with CH-RF at 0.5% (w/v) and a significant reduction of 84.8% at 0.25% (w/v). Lemons treated with CH-RF and kept under controlled conditions (20 °C and 90-95% relative humidity) exhibited a noteworthy reduction in green mold incidence four days post-inoculation. Notably, these effects persisted, with all treatments remaining significantly distinct from the control group until day 14. Furthermore, CH-RF showed high control of green mold in lemons after 20 days of cold storage (5 ± 1 °C). The disease incidence five days after cold storage indicated significant differences from the values observed in the control. Most CH-RF treatments showed enhanced control of green mold when riboflavin was activated by white-light exposure. These findings suggest that this novel fungicide could be a viable alternative to conventional synthetic fungicides, allowing more sustainable management of lemon fruit diseases.

3.
Photochem Photobiol ; 100(3): 772-781, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38100182

RESUMO

We report on the formation of toluidine blue O (TBO) sulfoxide by a self-sensitized photooxidation of TBO. Here, the photosulfoxidation process was studied by mass spectrometry (MS) and discussed in the context of photodemethylation processes which both contribute to TBO consumption over time. Analysis of solvent effects with D2O, H2O, and CH3CN along with product yields and MS fragmentation patterns provided mechanistic insight into TBO sulfoxide's formation. The formation of TBO sulfoxide is minor and detectable up to 12% after irradiation of 3 h. The photosulfoxidation process is dependent on oxygen wherein instead of a type II (singlet oxygen, 1O2) reaction, a type I reaction involving TBO to reach the TBO sulfoxide is consistent with the results. Density functional theory results point to the formation of the TBO sulfoxide by the oxidation of TBO via transiently formed peroxyl radical or thiadioxirane intermediates. We discover that the TBO photosulfoxidation arises competitively with TBO photodemethylation with the latter leading to formaldehyde formation.

4.
Chempluschem ; 88(10): e202300257, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37708459

RESUMO

Tau and α-synuclein are proteins involved in pathologies known as tauopathies and synucleinopathies, respectively. Moreover, evidence shows that there is a crosstalk between them as is seen in the brains of individuals with sporadic neurodegenerative disorders. Based on that, we present data showing that the hydrophobic α-peptide 71 VTGVTAVAQKTV82 induces the aggregation of the full-length tau fragment in the absence of heparin assessed by ThT. Moreover, AFM images reveal the presence of straight filaments and amorphous aggregates of full-length tau in the presence of the α-peptide. Additionally, ITC experiments showed the interaction of the α-peptide with tau full-length (441 amino acids),4R (amino acids from 244 to 369), and both hexapeptides 275 VQIINK280 and 306 VQIVYK311 through hydrophobic interactions. The Raman spectroscopy spectra showed conformational changes in the Amide region in the aggregates formed with full-length tau and α-syn peptide. Furthermore, the incubation of extracellular aggregates with N2a cells showed morphological differences in the cellular body and the nucleus suggesting cell death. Moreover,, the incubation of different types of aggregates in cell culture provokes the release of Lactate dehydrogenase (LDH). Altogether, we found that α-synuclein peptide can drive the aggregation of full-length tau-provoking morphological and structural changes evoking cytotoxic effects.


Assuntos
alfa-Sinucleína , Proteínas tau , Humanos , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Proteínas tau/química , Peptídeos , Aminoácidos , Interações Hidrofóbicas e Hidrofílicas
5.
J Phys Chem B ; 127(15): 3443-3451, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37026709

RESUMO

Supramolecular control of singlet oxygen generation is incredibly valuable for several fields with broad applications and thus still challenging. However, macrocyclic inclusion complexes inherently restrict the interaction of photosensitizers with surrounding oxygen in the media. To circumvent this issue, we turned our attention in this work to acyclic cucurbituril-like containers and uncover their properties as supramolecular hosts for photosensitizers with extraordinary control of their photophysics, including singlet oxygen generation. Thermodynamic and photophysical studies were carried out showing that these acyclic containers compare very favorably to benchmark macrocycles such as cucurbiturils and cyclodextrins in terms of their binding affinities and supramolecular control of singlet oxygen generation. Acyclic container with terminal naphthalene walls offers a similar cavity to cucurbit[7]uril and the same carbonyl-lined portals for a tight binding of phenothiazinium dye methylene blue and stabilizing its singlet and triplet excited states. Thus, generation of singlet oxygen for this container is higher than for other macrocycles and even higher than the free photosensitizer. While the acyclic container with smaller terminal benzene walls, stacks over the dye through sulfur-π and π-π interactions deactivating the singlet and triplet excited states, thus showing the lowest generation of singlet oxygen out of all of the studied systems. Due to the great water solubility and biocompatibility of these systems, they possess great potential for novel applications in photocatalysis, synthesis, and biomedical fields, among others.

6.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36902328

RESUMO

Direct FXa inhibitors are an important class of bioactive molecules (rivaroxaban, apixaban, edoxaban, and betrixaban) applied for thromboprophylaxis in diverse cardiovascular pathologies. The interaction of active compounds with human serum albumin (HSA), the most abundant protein in blood plasma, is a key research area and provides crucial information about drugs' pharmacokinetics and pharmacodynamic properties. This research focuses on the study of the interactions between HSA and four commercially available direct oral FXa inhibitors, applying methodologies including steady-state and time-resolved fluorescence, isothermal titration calorimetry (ITC), and molecular dynamics. The HSA complexation of FXa inhibitors was found to occur via static quenching, and the complex formation in the ground states affects the fluorescence of HSA, with a moderate binding constant of 104 M-1. However, the ITC studies reported significantly different binding constants (103 M-1) compared with the results obtained through spectrophotometric methods. The suspected binding mode is supported by molecular dynamics simulations, where the predominant interactions were hydrogen bonds and hydrophobic interactions (mainly π-π stacking interactions between the phenyl ring of FXa inhibitors and the indole moiety of Trp214). Finally, the possible implications of the obtained results regarding pathologies such as hypoalbuminemia are briefly discussed.


Assuntos
Fator X , Albumina Sérica Humana , Tromboembolia Venosa , Humanos , Anticoagulantes , Sítios de Ligação , Calorimetria/métodos , Simulação de Acoplamento Molecular , Ligação Proteica , Albumina Sérica Humana/química , Espectrometria de Fluorescência , Termodinâmica , Fator X/antagonistas & inibidores
7.
Photochem Photobiol ; 99(2): 469-497, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36434770

RESUMO

Photodynamic therapy of cancer (PDT) is a therapeutic technique, minimally invasive, which is currently used to treat cancerous lesions and tumors that have been in the spotlight for its potential over the recent decades. Nonetheless, PDT still needs further development to become a first-option treatment for patients. This review compiles recent progress in several aspects of the current research in the constantly growing area of PDT to overcome the main challenges as an attempt to serve as a guide and reference for newcomers into this research area. This review has been prepared to highlight the use of chemical modifications on photosensitizers to improve their solubility, photostability, selectivity and phototoxicity. Additionally, the use of liposomes and cavitands as drug delivery systems to aid in the biodistribution and bioaccumulation of photosensitizers is presented. Also, the combination of PDT with chemotherapy or immunotherapy as an option to boost and improve treatment outcomes is discussed. Finally, the inhibition of antioxidant enzymes as a strategy for a synergistic effect to ameliorate the performance of the photosensitizers in PDT is presented as an alternative for future researchers.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Fotoquimioterapia/métodos , Distribuição Tecidual , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos
8.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361692

RESUMO

A new benzodithiophene and benzotriazole-based terpolymer bearing a fluorescein derivative as a side group was synthesized and studied for organic solar cell (OSC) applications. This side group was covalently bounded to the backbone through an n-hexyl chain to induce the intramolecular Förster Resonance Energy Transfer (FRET) process and thus improve the photovoltaic performance of the polymeric material. The polymer exhibited good solubility in common organic chlorinated solvents as well as thermal stability (TDT10% > 360 °C). Photophysical measurements demonstrated the occurrence of the FRET phenomenon between the lateral group and the terpolymer. The terpolymer exhibited an absorption band centered at 501 nm, an optical bandgap of 2.02 eV, and HOMO and LUMO energy levels of −5.30 eV and −3.28 eV, respectively. A preliminary study on terpolymer-based OSC devices showed a low power-conversion efficiency (PCE) but a higher performance than devices based on an analogous polymer without the fluorescein derivative. These results mean that the design presented here is a promising strategy to improve the performance of polymers used in OSCs.


Assuntos
Energia Solar , Transferência Ressonante de Energia de Fluorescência , Tiofenos , Fluoresceína , Polímeros
9.
J Agric Food Chem ; 70(30): 9276-9282, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35866700

RESUMO

A new chemical conjugate between protoporphyrin IX (PPIX) and chitosan oligosaccharides (CH) was prepared and evaluated in vitro as an antifungal agent against Penicillium digitatum. Chemical characterization and photophysical/photochemical studies were conducted. The antifungal effect of the CH-PPIX conjugate was compared to its components (PPIX and CH) and a physical mixture of both, under dark and illuminated conditions. The CH-PPIX conjugate was photostable and inhibited fungal growth with 100% efficiency at a dose of 0.005% w/v under visible light irradiation, while no antifungal activity was observed in the dark. Under the same conditions, CH and PPIX did not display any fungicidal activity, demonstrating the improved properties of the conjugate. Insights into the mechanism of fungal inactivation revealed an efficient spore uptake and photoinduced membrane damage through singlet oxygen generation. This new bioconjugate, which is based on natural components, represents a promising agent for fungicidal formulations based on antimicrobial photodynamic therapy.


Assuntos
Quitosana , Fármacos Fotossensibilizantes , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Quitosana/química , Quitosana/farmacologia , Oligossacarídeos/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Protoporfirinas/química , Protoporfirinas/farmacologia
10.
Photochem Photobiol Sci ; 21(3): 349-359, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35088367

RESUMO

Supramolecular strategies as well as combinatorial approaches have been proposed to improve cancer therapeutics. In this work, we investigated the encapsulation of the photosensitizer acridine orange (AO) and the chemotherapeutic drug oxaliplatin (OxPt) in cucurbit[8]uril (CB[8]), and tested their effect both separate and combined on tumoral cells cultivated in vitro. Binding constants and enthalpies of reaction for the AO@CB[8], (AO)2@CB[8] and OxPt@CB[8] complexes were determined by isothermal titration calorimetry. In the case of AO, a negative cooperativity for the binding of the second AO molecule was found, in agreement with previous fluorescence titration data. We show herein that the AO@CB[8] complex was effectively incorporated within the cells and showed important phototoxicity, while the OxPt@CB[8] complex was cytotoxic only at long incubation times (24 h). Pre-treatment of the cells with the OxPt@CB[8] complex for 24 h inhibited any photodynamic action by the later treatment with the AO@CB[8] complex. However, when both complexes were co-incubated for 90 min, the combined cytotoxicity/phototoxicity was superior to any of the treatments individually. A cooperative effect was identified that added up to an extra 30% cytotoxicity/phototoxicity. The results point to an interesting system where a photosensitizer and chemotherapeutic drug are co-encapsulated in a macrocycle to develop chemophototherapy applications.


Assuntos
Antineoplásicos , Fármacos Fotossensibilizantes , Antineoplásicos/química , Antineoplásicos/farmacologia , Hidrocarbonetos Aromáticos com Pontes/química , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Compostos Heterocíclicos com 2 Anéis , Imidazóis/química , Imidazóis/farmacologia , Imidazolidinas , Compostos Macrocíclicos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia
11.
Phys Chem Chem Phys ; 24(5): 3222-3230, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35044390

RESUMO

A new toluidine blue-myristic acid photosensitizer derivate (TBOMyr) was investigated as a design molecule to bind simultaneously to cucurbit[7]uril (CB[7]) and human serum albumin (HSA) with the aim of constructing a biosupramolecular assembly. Molecular docking and dynamics calculations revealed the main supramolecular and bio-molecular interactions of TBOMyr with the macrocycle or the protein, respectively. The addition of the negatively charged myristic acid-like tail resulted in a unique conformation of the CB[7] complex where the phenothiazine core was included in the cavity of CB[7], leaving the fatty acid portion free to interact with the protein. A favorable ternary interaction between TBOMyr, CB[7] and HSA was suggested by the calculations, and an experimental binding affinity in the order of 105 M-1 was determined for the TBOMyr@CB[7] complex with HSA. The new TBOMyr derivative could find applications in photodynamic therapy benefiting from the biosupramolecular interactions as a transport system.


Assuntos
Albumina Sérica Humana , Cloreto de Tolônio , Hidrocarbonetos Aromáticos com Pontes , Humanos , Imidazóis , Simulação de Acoplamento Molecular , Ácido Mirístico
12.
Polymers (Basel) ; 15(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36616417

RESUMO

In the search for solution-processable TADF materials as a light emitting layer for OLED devices, polymers have attracted considerable attention due to their better thermal and morphological properties in the film state with respect to small molecules. In this work, a new polymer (p-TPS-DMAC-TRZ) with thermally activated delayed fluorescence (TADF) light-emitting characteristics was prepared from a conjugation-break unit (TPS) and a well-known TADF core (DAMC-TRZ). This material was designed to preserve the photophysical properties of DAMC-TRZ, while improving other properties, such as thermal stability, promoted by its polymerization with a TPS core. Along with excellent solubility in common organic solvents such as toluene, chloroform and THF, the polymer (Mn = 9500; Mw = 15200) showed high thermal stability (TDT5% = 481 °C), and a Tg value of 265 °C, parameters higher than the reference small molecule DMAC-TRZ (TDT5% = 305 °C; Tg = 91 °C). The photoluminescence maximum of the polymer was centered at 508 nm in the solid state, showing a low redshift compared to DMAC-TRZ (500 nm), while also showing a redshift in solution with solvents of increasing polarity. Time-resolved photoluminescence of p-TPS-DMAC-TRZ at 298 K, showed considerable delayed emission in solid state, with two relatively long lifetimes, 0.290 s (0.14) and 2.06 s (0.50), and a short lifetime of 23.6 ns, while at 77 K, the delayed emission was considerably quenched, and two lifetimes in total were observed, 24.6 ns (0.80) and 180 ns (0.20), which was expected from the slower RISC process at lower temperatures, decreasing the efficiency of the delayed emission and demonstrating that p-TPS-DMAC-TRZ has a TADF emission. This is in agreement with room temperature TRPL measurements in solution, where a decrease in both lifetime and delayed contribution to total photoluminescence was observed when oxygen was present. The PLQY of the mCP blend films with 1% p-TPS-DMAC-DMAC-TRZ as a dopant was determined to be equal to 0.62, while in the pure film, it was equal to 0.29, which is lower than that observed for DMAC-TRZ (0.81). Cyclic voltammetry experiments showed similarities between p-TPS-DMAC-TRZ and DAMC-TRZ with HOMO and LUMO energies of -5.14 eV and -2.76 eV, respectively, establishing an electrochemical bandgap value of 2.38 eV. The thin film morphology of p-TPS-DMAC-TRZ and DMAC-TRZ was compared by AFM and FE-SEM, and the results showed that p-TPS-DMAC-TRZ has a smoother surface with fewer defects, such as aggregations. These results show that the design strategy succeeded in improving the thermal and morphological properties in the polymeric material compared to the reference small molecule, while the photophysical properties were mostly maintained, except for the PLQY determined in the pure films. Still, these results show that p-TPS-DMAC-TRZ is a good candidate for use as a light-emitting layer in OLED devices, especially when used as a host-guest mixture in suitable materials such as mCP.

14.
J Agric Food Chem ; 69(3): 945-954, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33438400

RESUMO

A novel chemical conjugate between chitosan (CH) and riboflavin (RF) has been synthesized and characterized via Fourier transform infrared, NMR, and other spectroscopic methods. Photophysical and photochemical properties such as absorption spectra, fluorescence emission, fluorescence anisotropy, and singlet oxygen generation were characterized as well. This new biopolymer-based conjugate was designed to have an antifungal effect enhanced through antimicrobial photodynamic therapy. The antifungal effect of this conjugate (CH-RF) was compared with CH and RF against Penicillium digitatum in vitro. The conjugate showed the highest fungal growth inhibition of all systems tested at a dose of 0.5% w/v. This new biopolymer-based compound could be a promising alternative to fungicides used in citrus fruits postharvest.


Assuntos
Quitosana/química , Quitosana/farmacologia , Fungicidas Industriais/farmacologia , Penicillium/efeitos dos fármacos , Riboflavina/química , Riboflavina/farmacologia , Citrus/microbiologia , Fungicidas Industriais/síntese química , Fungicidas Industriais/química , Luz , Penicillium/crescimento & desenvolvimento , Doenças das Plantas/microbiologia
15.
Photochem Photobiol ; 97(1): 71-79, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32619275

RESUMO

Toluidine blue O (TBO) is a water-soluble photosensitizer that has been used in photodynamic antimicrobial and anticancer treatments, but suffers from limited solubility in hydrophobic media. In an effort to incrementally increase TBO's hydrophobicity, we describe the synthesis of hexanoic (TBOC6) and myristic (TBOC14) fatty acid derivatives of TBO formed in low to moderate percent yields by condensation with the free amine site. Covalently linking 6 and 14 carbon chains led to modifications of not only TBO's solubility, but also its photophysical and photochemical properties. TBOC6 and TBOC14 derivatives were more soluble in organic solvents and showed hypsochromic shifts in their absorption and emission bands. The solubility in phosphate buffer solution was low for both TBOC6 and TBOC14, but unexpectedly slightly greater in the latter. Both TBOC6 and TBOC14 showed decreased triplet excited-state lifetimes and singlet oxygen quantum yields in acetonitrile, which was attributed to heightened aggregation of these conjugates particularly at high concentrations due to the hydrophobic "tails." While in diluted aqueous buffer solution, indirect measurements showed similar efficiency in singlet oxygen generation for TBOC14 compared to TBO. This work demonstrates a facile synthesis of fatty acid TBO derivatives leading to amphiphilic compounds with a delocalized cationic "head" group and hydrophobic "tails" for potential to accumulate into biological membranes or membrane/aqueous interfaces in PDT applications.


Assuntos
Ácidos Graxos/química , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/farmacologia , Cloreto de Tolônio/análogos & derivados , Estrutura Molecular , Fármacos Fotossensibilizantes/química , Oxigênio Singlete/química , Espectrometria de Fluorescência , Cloreto de Tolônio/síntese química , Cloreto de Tolônio/farmacologia
16.
J Phys Chem A ; 123(23): 4863-4872, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31117602

RESUMO

Experiments and theoretical calculations by density functional theory (DFT) have been carried out to examine a self-sensitized type I photooxidation of toluidine blue O (TBO+). This study attempts to build a connection between visible-light photolysis and demethylation processes of methylamine compounds, such as TBO+. We show that controlled photoinduced mono- and double-demethylation of TBO+ can be achieved. The kinetics for the appearance rate of the mono-demethylated TBO+ and the double-demethylated TBO+ were found to fit pseudo-first-order kinetics. DFT calculations have been used to examine the demethylation of TBO+ and included N, N-dimethylaniline as a model compound for TBO+. The results show an oxygen-dependent demethylation process. The mechanism for the sequential methyl loss is proposed to be due to H• or e-/H+ transfer to 3TBO+* followed by a reaction of TBO+• with O2, yielding a C-peroxyTBO+• intermediate. Instead of aminyl radical peroxyl formation, i.e., N-peroxyTBO+•, the C-centered peroxyTBO+• is favored, that upon dimerization (Russell mechanism) leads to dissociation of formaldehyde from the methylamine site.

17.
ACS Omega ; 3(7): 8337-8343, 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30087942

RESUMO

The formation of inclusion complexes between drugs and macrocycles has proven to be an effective strategy to increase solubilization and stabilization of the drug, while in several cases improving their biological activity. In this context, we explored the formation of an inclusion complex between chemotherapeutic drug Melphalan (Mel) and cucurbit[7]uril (CB[7]), and studied its effect on Mel alkylating activity, hydrolysis, and cytotoxicity. The formation of the inclusion complex (Mel@CB[7]) was proven by absorption and fluorescence spectroscopy, NMR, docking studies, and molecular dynamics simulations. The binding constant for Mel and CB[7] was fairly high at pH 1 ((1.7 ± 0.7) × 106 M-1), whereas no binding was observed at neutral pH. The Mel@CB[7] complex showed a slightly decreased alkylating activity, whereas the cytotoxicity on the HL-60 cell line was maintained. The formation of the complex did not protect Mel from hydrolysis, and this result is discussed based on the simulated structure for the complex.

18.
Photochem Photobiol Sci ; 16(8): 1268-1276, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28636041

RESUMO

In this paper, we explored the fluorescence properties of eight aurone derivatives bearing methoxy groups and bromine atoms as substituents in the benzene rings. All derivatives showed strong solvatochromic absorption and emission properties in solvents of different polarities. Some of them showed high fluorescence quantum yields, which make them potential compounds for sensing applications. The position of the methoxy groups in the benzofuranone moiety and the presence of bromine atoms in the benzene ring had a strong influence on the fluorescence behaviour of the aurones. DFT calculations allowed us to explain the emission properties of aurones and their solvatochromism, which was related to an excited state with strong charge-transfer character. Aurone 4 has the most promising characteristics showing a large difference in the quantum yields and large Stokes shifts depending on the solvent polarities. These results prompted us to explore some preliminary biological applications for aurone 4 such as the sensing of hydrophobic pockets of a protein and its thermotropic behaviour in liposomes.


Assuntos
Benzofuranos/química , Modelos Teóricos , Benzofuranos/metabolismo , Humanos , Lipossomos/química , Lipossomos/metabolismo , Teoria Quântica , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Solventes/química , Espectrometria de Fluorescência
19.
Phys Chem Chem Phys ; 19(3): 2574-2582, 2017 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-28059428

RESUMO

Biosupramolecular assemblies combining cucurbit[n]urils (CB[n]s) and proteins for the targeted delivery of drugs have the potential to improve the photoactivity of photosensitizers used in the photodynamic therapy of cancer. Understanding the complexity of these systems and how it affects the properties of photosensitizers is the focus of this work. We used acridine orange (AO+) as a model photosensitizer and compared it with methylene blue (MB+) and a cationic porphyrin (TMPyP4+). Encapsulation of the photosensitizers into CB[n]s (n = 7, 8) modified their photoactivity. In particular, for AO+, the photo-oxidation of HSA was enhanced in the presence of CB[7]; meanwhile it was decreased when included into CB[8]. Accordingly, peroxide generation and protein fragmentation were also increased when AO+ was encapsulated into CB[7]. The triplet excited state lifetimes of all the photosensitizers were lengthened by their encapsulation into CB[n]s, while the singlet oxygen quantum yield was enhanced only for AO+ and TMPyP4+, but it decreased for MB+. The results obtained in this work prompt the necessity of further investigating these kinds of hybrid assemblies as drug delivery systems because of their possible applications in biomedicine.


Assuntos
Albuminas/química , Compostos Macrocíclicos/química , Processos Fotoquímicos , Fármacos Fotossensibilizantes/química , Antineoplásicos/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Azul de Metileno/química , Oxirredução , Fotoquimioterapia/métodos , Porfirinas/química , Oxigênio Singlete
20.
Photochem Photobiol Sci ; 14(4): 842-52, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25683690

RESUMO

Ternary supramolecular complexes involving cucurbit[n]urils and proteins are of potential interest for improving drug transport and delivery. We report here time-resolved fluorescence studies for acridine orange complexes with cucurbit[7]uril and cucurbit[8]uril in the presence of human serum albumin as a model system. A detailed characterization of the fluorescence lifetime and anisotropy properties of the different acridine orange complexes with cucurbit[n]urils and human serum albumin was performed. Of particular importance is the analysis of the stepwise binding for acridine orange-cucurbit[8]uril complexes and the assignment of the fluorescence and anisotropy properties to the 2 : 1 complex. Anisotropy decay measurements were essential to detect protein-bound species and to discriminate between different complexes. Based on the fluorescence evidence, ternary interactions with the protein are suggested for the acridine orange-cucurbit[7]uril complex but not for the cucurbit[8]uril complex. We highlight here the usability and sensitivity of the combined fluorescence analysis.


Assuntos
Hidrocarbonetos Aromáticos com Pontes/química , Polarização de Fluorescência/métodos , Imidazóis/química , Albumina Sérica/química , Laranja de Acridina/química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA