Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 330: 124999, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33780712

RESUMO

The energy potential of residue-derived biogas via electricity and biomethane production was assessed in an integrated 1G2G sugarcane biorefinery concept. The mono-digestion of 1G-vinasse (1G-VN) was compared with different co-digestion systems, namely, 1G-VN + filter cake (FC) + deacetylation liquor (DL) in the season and FC + DL in the off-season. Gross energy output values and the resulting sugarcane use efficiency were also assessed in different biorefinery schemes. Electricity production from 1G to VN (5.0 MW) could be increased by over 400% through its co-digestion with FC and DL (22.3 MW). Alternatively, biomethane could fully supply the diesel-powered fleet (1.8 × 106 Nm3 month-1) of a sugarcane plant processing 10 million tons of sugarcane per harvest, and the surplus biogas could flexibly provide 36 MW of extra electricity. Biomethane could enhance the energy output of 1G2G sugarcane biorefineries by 15%. However, 2G processes still require marked improvements to maximize energy production from sugarcane.


Assuntos
Saccharum , Anaerobiose , Biocombustíveis , Digestão , Eletricidade , Metano
2.
Artigo em Inglês | MEDLINE | ID: mdl-28737443

RESUMO

This paper reports the characterization of the polluting potential of sugarcane vinasse, the main wastewater from ethanol production. Compositional data from vinasse samples collected from sugarcane biorefineries were used to predict negative effects on the soil, water resources and crops potentially associated with fertirrigation, the primary final destination of vinasse in Brazil. High risks of soil salinization were associated with the land disposal of vinasse, as evidenced by the high levels of total dissolved solids (TDS; >4,000 mg L-1) and electrical conductivity (>6.7 dS m-1). The high TDS levels coupled with the high biodegradable organic content of vinasse (>14 g L-1) also favor organic overloading events, leading to local anaerobiosis conditions. Conversely, soil sodification should not be observed in areas fertirrigated with sugarcane vinasse, given the low Na concentrations (<66 mg L-1) relative to Mg (>145.1 mg L-1) and Ca (>458.4 mg L-1) levels. Priority pollutants (Cu, Cr, Ni, Pb and Zn) and phytotoxic elements (Al and Fe) were also found in the analyzed samples; however, relevant environmental impacts should not be associated with these particular constituents. Overall, the relatively simple methodology used herein could efficiently replace massive field data collection to provide a basic understanding of the fate of vinasse in the environment in order to highlight the priority points to be considered in the management of this effluent. In summary, the prompt implementation of treatment plants in distilleries, in addition to a continuous and broad compositional characterization of vinasse, is essential to guarantee its adequate reuse.


Assuntos
Irrigação Agrícola/métodos , Saccharum/química , Poluentes do Solo/análise , Águas Residuárias/química , Poluentes da Água/análise , Brasil
3.
Bioresour Technol ; 197: 201-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26340028

RESUMO

Biohydrogen production in fixed-bed reactors often leads to unstable and decreasing patterns because the excessive accumulation of biomass in the bed negatively affects the specific organic loading rate (SOLR) applied to the reactor. In this context, an innovative reactor configuration, i.e., the continuous multiple tube reactor (CMTR), was assessed in an attempt to better control the SOLR for biohydrogen production. The CMTR provides a continuous discharge of biomass, preventing the accumulation of solids in the long-term. Sucrose was used as the carbon source and mesophilic temperature conditions (25°C) were applied in three continuous assays. The reactor showed better performance when support material was placed in the outlet chamber to enhance biomass retention within the reactor. Although the SOLR could not be effectively controlled, reaching values usually higher than 10gsucroseg(-1)VSSd(-1), the volumetric hydrogen production and molar hydrogen production rates peaked, respectively, at 1470mLH2L(-1)d(-1) and 45mmolH2d(-1), indicating that the CMTR was a suitable configuration for biohydrogen production.


Assuntos
Reatores Biológicos , Hidrogênio/metabolismo , Biomassa , Carbono , Fermentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...