Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Regul Toxicol Pharmacol ; 43(2): 141-9, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16169643

RESUMO

Biomonitoring was used to assess the combined dermal, oral, and inhalation exposure associated with the agricultural use of Harness Plus, an emulsifiable concentrate formulation of the herbicide acetochlor. Twenty Spanish farmers handled and applied acetochlor to maize in the spring of 2003, following the product label recommendations. Open- and closed-cabin applications were equally represented. Urine was collected during six consecutive days, starting the day prior to application. Daily composites were analyzed for 2-ethyl-6-methyl-aniline, a common chemophore representing the major urinary acetochlor metabolites. All applicators showed detectable concentrations in urine after application. Although, the open-cabin applicators treated fewer hectares, they showed significantly higher exposure compared to the closed-cabin applicators (average exposure: 0.004 and 0.002 mg/kg bw/day, respectively). Linear regression analysis suggested that untracked incidents had a significant impact on the total exposure. Other events that may have contributed to the observed exposure are repair of faulty equipment, accidental spillages, splashes, and inadequate use of protective gloves. The average margins of exposure (MOE) for farmers ranged from 23,000 (open cabin) to about 44,000 (closed cabin). For professional applicators the MOEs were 10-fold lower. These MOEs clearly indicate that no adverse health effects should be expected from agricultural acetochlor applications.


Assuntos
Herbicidas/efeitos adversos , Exposição Ocupacional/estatística & dados numéricos , Toluidinas/efeitos adversos , Administração Oral , Algoritmos , Creatinina/urina , Determinação de Ponto Final , Monitoramento Ambiental , Monitoramento Epidemiológico , Herbicidas/farmacocinética , Humanos , Exposição por Inalação , Modelos Lineares , Medição de Risco , Absorção Cutânea , Espanha/epidemiologia , Toluidinas/farmacocinética
2.
J Environ Qual ; 34(3): 1004-15, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15888886

RESUMO

The Acetochlor Registration Partnership conducted a prospective ground water (PGW) monitoring program to investigate acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl)-acetamide] transport to ground water at eight sites. The distribution of soil textures among these sites was weighted toward coarser soil types, while also including finer-textured soils that dominate most corn (Zea mays L.)-growing areas of the United States. Each site consisted of a 1.2-ha test plot adjacent to a 0.2-ha control plot. Suction lysimeters and monitoring wells were installed at multiple depths within each test and control plot to sample soil-pore water and near-surface ground water. Irrigation was applied to each site during the growing season to ensure water input of 110 to 200% of average historical rainfall. Acetochlor dissipated rapidly from surface soils at all sites with a DT(50) (time for 50% of the initial residues to dissipate) of only 3 to 9 d, but leaching was not an important loss mechanism, with only 0.25% of the 15,312 soil-pore water and ground water samples analyzed containing parent acetochlor at or above 0.05 microg L(-1). However, quantifiable residues of a soil degradation product, acetochlor ethanesulfonic acid, were more common, with approximately 16% of water samples containing concentrations at or above 1.0 microg L(-1). A second soil degradation product, acetochlor oxanilic acid, was present at concentrations at or above 1.0 microg L(-1) in only 0.15% of water samples analyzed. The acetochlor PGW program demonstrated that acetochlor lacks the potential to leach to ground water at detectable concentrations, and when applied in accordance with label restrictions, is unlikely to move to ground water at concentrations hazardous to human health.


Assuntos
Monitoramento Ambiental , Herbicidas/análise , Poluentes do Solo/análise , Toluidinas/análise , Poluentes da Água/análise , Humanos , Porosidade , Saúde Pública , Medição de Risco , Solubilidade , Estados Unidos , Movimentos da Água
3.
J Environ Qual ; 34(3): 793-803, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15843642

RESUMO

The Acetochlor Registration Partnership (ARP) conducted a 7-yr ground water monitoring program at a total of 175 sites in seven states: Illinois, Indiana, Iowa, Kansas, Minnesota, Nebraska, and Wisconsin. While acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl)-acetamide] was the primary focus, the analytical methods also quantified alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)-acetamide], atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine], metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)-acetamide], and two classes of soil degradates for acetochlor, alachlor, and metolachlor. Ground water samples were collected monthly for five years and quarterly for two additional years. All samples were analyzed for the presence of parent herbicides, and degradates were monitored during the last three years. Parent acetochlor was detected above 0.1 microg L(-1) in three or more samples at just seven sites. Alachlor and metolachlor were also rarely detected, but atrazine was detected in 36% of all samples analyzed. Even more widespread were the tertiary amide sulfonic acid (ethanesulfonic acid, ESA) degradates of acetochlor, alachlor, and metolachlor, which were detected at 81, 76, and 106 sites, respectively. The other class of monitored soil degradates (oxanilic acid, OXA) was detected less frequently, at 26, 16, and 63 sites for acetochlor OXA, alachlor OXA, and metolachlor OXA, respectively. The geographic distribution of detections did not follow the pattern originally expected when the study began. Rather than being a function primarily of soil texture, the detection of these herbicides in shallow ground water was related to site-specific factors associated with local topography, the occurrence of surface water drainage features, irrigation practices, and the vertical positioning of the well screen.


Assuntos
Herbicidas/análise , Toluidinas/análise , Poluentes da Água/análise , Agricultura , Monitoramento Ambiental , Solo , Estados Unidos
4.
J Environ Qual ; 34(3): 877-89, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15843651

RESUMO

A surface drinking water monitoring program for four corn (Zea mays L.) herbicides was conducted during 1995-2001. Stratified random sampling was used to select 175 community water systems (CWSs) within a 12-state area, with an emphasis on the most vulnerable sites, based on corn intensity and watershed size. Finished drinking water was monitored at all sites, and raw water was monitored at many sites using activated carbon, which was shown capable of removing herbicides and their degradates from drinking water. Samples were collected biweekly from mid-March through the end of August, and twice during the off-season. The analytical method had a detection limit of 0.05 microg L(-1) for alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)-acetamide] and 0.03 microg L(-1) for acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl)-acetamide], atrazine [6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine], and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)-acetamide]. Of the 16528 drinking water samples analyzed, acetochlor, alachlor, atrazine, and metolachlor were detected in 19, 7, 87, and 53% of the samples, respectively. During 1999-2001, samples were also analyzed for the presence of six major degradates of the chloroacetanilide herbicides, which were detected more frequently than their parent compounds, despite having higher detection limits of 0.1 to 0.2 microg L(-1). Overall detection frequencies were correlated with product use and environmental fate characteristics. Reservoirs were particularly vulnerable to atrazine, which exceeded its 3 microg L(-1) maximum contaminant level at 25 such sites during 1995-1999. Acetochlor annualized mean concentrations (AMCs) did not exceed its mitigation trigger (2 microg L(-1)) at any site, and comparisons of observed levels with standard measures of human and ecological hazards indicate that it poses no significant risk to human health or the environment.


Assuntos
Herbicidas/análise , Poluentes Químicos da Água/análise , Agricultura , Monitoramento Ambiental , Medição de Risco , Estados Unidos , Abastecimento de Água , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...