Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 7(21)2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34138738

RESUMO

The observation of quantum criticality in diverse classes of strongly correlated electron systems has been instrumental in establishing ordering principles, discovering new phases, and identifying the relevant degrees of freedom and interactions. At focus so far have been insulators and metals. Semimetals, which are of great current interest as candidate phases with nontrivial topology, are much less explored in experiments. Here, we study the Kondo semimetal CeRu4Sn6 by magnetic susceptibility, specific heat, and inelastic neutron scattering experiments. The power-law divergence of the magnetic Grünesien ratio reveals that, unexpectedly, this compound is quantum critical without tuning. The dynamical energy over temperature scaling in the neutron response throughout the Brillouin zone and the temperature dependence of the static uniform susceptibility, indicate that temperature is the only energy scale in the criticality. Such behavior, which has been associated with Kondo destruction quantum criticality in metallic systems, could be generic in the semimetal setting.

2.
Nat Commun ; 12(1): 2644, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976162

RESUMO

Chiral superconductors have been proposed as one pathway to realize Majorana normal fluid at its boundary. However, the long-sought 2D and 3D chiral superconductors with edge and surface Majorana normal fluid are yet to be conclusively found. Here, we report evidence for a chiral spin-triplet pairing state of UTe2 with surface normal fluid response. The microwave surface impedance of the UTe2 crystal was measured and converted to complex conductivity, which is sensitive to both normal and superfluid responses. The anomalous residual normal fluid conductivity supports the presence of a significant normal fluid response. The superfluid conductivity follows the temperature behavior predicted for an axial spin-triplet state, which is further narrowed down to a chiral spin-triplet state with evidence of broken time-reversal symmetry. Further analysis excludes trivial origins for the observed normal fluid response. Our findings suggest that UTe2 can be a new platform to study exotic topological excitations in higher dimension.

3.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 1): 137-143, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32831248

RESUMO

The crystal structure of a new superconductor UTe2 has been investigated using single-crystal neutron diffraction for the first time at the low temperature (LT) of 2.7 K, just above the superconducting transition temperature of ∼1.6 K, in order to clarify whether the orthorhombic structure of type Immm (No. 71), reported for the room-temperature (RT) structure persists down to the superconducting phase and can be considered as a parent symmetry for the development of spin-triplet superconductivity. In contrast to the previously reported phase transition at about 100 K [Stöwe (1996). J. Solid State Chem. 127, 202-210], our high-precision LT neutron diffraction data show that the body-centred RT symmetry is indeed maintained down to 2.7 K. No sign of a structural change from RT down to 2.7 K was observed. The most significant change depending on temperature was observed for the U ion position and the U-U distance along the c direction, implying its potential importance as a magnetic interaction path. No magnetic order could be deduced from the neutron diffraction data refinement at 2.7 K, consistent with bulk magnetometry. Assuming normal thermal evolution of the lattice parameters, moderately large linear thermal expansion coefficients of about α = 2.8 (7) × 10-5 K-1 are estimated.

4.
Nat Phys ; 15(12)2019.
Artigo em Inglês | MEDLINE | ID: mdl-34131432

RESUMO

Applied magnetic fields underlie exotic quantum states, such as the fractional quantum Hall effect1 and Bose-Einstein condensation of spin excitations2. Superconductivity, however, is inherently antagonistic towards magnetic fields. Only in rare cases3-5 can these effects be mitigated over limited fields, leading to re-entrant superconductivity. Here, we report the coexistence of multiple high-field re-entrant superconducting phases in the spin-triplet superconductor UTe2 (ref. 6). We observe superconductivity in the highest magnetic field range identified for any re-entrant superconductor, beyond 65 T. Although the stability of superconductivity in these high magnetic fields challenges current theoretical models, these extreme properties seem to reflect a new kind of exotic superconductivity rooted in magnetic fluctuations7 and boosted by a quantum dimensional crossover8.

5.
Phys Rev B ; 100(22)2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34136735

RESUMO

Low-temperature electrical and thermal transport, magnetic penetration depth, and heat capacity measurements were performed on single crystals of the actinide superconductor UTe2 to determine the structure of the superconducting energy gap. Heat transport measurements performed with currents directed along both crystallographic a and b axes reveal a vanishingly small residual fermionic component of the thermal conductivity. The magnetic field dependence of the residual term follows a rapid, quasilinear increase consistent with the presence of nodal quasiparticles, rising toward the a-axis upper critical field where the Wiedemann-Franz law is recovered. Together with a quadratic temperature dependence of the magnetic penetration depth up to T/T c = 0.3, these measurements provide evidence for an unconventional spin-triplet superconducting order parameter with point nodes. Millikelvin specific heat measurements performed on the same crystals used for thermal transport reveal an upturn below 300 mK that is well described by a divergent quantum-critical contribution to the density of states (DOS). Modeling this contribution with a T -1/3 power law allows restoration of the full entropy balance in the superconducting state and a resultant cubic power law for the electronic DOS below T c , consistent with the point-node gap structure determined by thermal conductivity and penetration depth measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...