Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(22): 10207-10220, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38767574

RESUMO

We prepared polyoxomolybdates with methylammonium countercations from methylammonium monomolybdate, (CH3NH3)2[MoO4], through two dehydrative condensation methods, acidifying in the aqueous solution and solid-state heating. Discrete (CH3NH3)10[Mo36O112(OH)2(H2O)14], polymeric ((CH3NH3)8[Mo36O112(H2O)14])n, and polymeric ((CH3NH3)4[γ-Mo8O26])n were selectively isolated via pH control of the aqueous (CH3NH3)2[MoO4] solution. The H2SO4-acidified solution of pH < 1 produced "sulfonated α-MoO3", polymeric ((CH3NH3)2[(MoO3)3(SO4)])n. The solid-state heating of (CH3NH3)2[MoO4] in air released methylamine and water to produce several methylammonium polyoxomolybdates in the sequence of discrete (CH3NH3)8[Mo7O24-MoO4], discrete (CH3NH3)6[Mo7O24], discrete (CH3NH3)8[Mo10O34], and polymeric ((CH3NH3)4[γ-Mo8O26])n, before their transformation into molybdenum oxides such as hexagonal-MoO3 and α-MoO3. Notably, some of their polyoxomolybdate structures were different from polyoxomolybdates produced from ammonium molybdates, such as (NH4)2[MoO4] or (NH4)6[Mo7O24], indicating that countercation affected the polyoxomolybdate structure. Moreover, among the tested polyoxomolybdates, (CH3NH3)6[Mo7O24] was the best negative staining reagent for the observation of the SARS-CoV-2 virus using transmission electron microscopy.

2.
RSC Adv ; 12(33): 21280-21286, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35975059

RESUMO

Using Na-encapsulated benzo[18]crown-6 (Na)(B18C6) as a counter cation, we successfully magnetically isolated a fluoride-bridging Dy dinuclear complex {[(PW11O39)Dy(H2O)2]2F} (Dy2POM) with lacunary Keggin ligands. (Na)(B18C6) formed two types of tetramers through C-H⋯O, π⋯π and C-H⋯π interactions, and each tetramer aligned in one dimension along the c-axis to form two types of channels. One channel was partially penetrated by a supramolecular cation from the ±a-axis direction, dividing the channel in the form of a "bamboo node". Dy2POM was spatially divided by this "bamboo node," which magnetically isolated one portion from the other. The temperature dependence of the magnetic susceptibility indicated a weak ferromagnetic interaction between the Dy ions bridged by fluoride. Dy2POM exhibited the magnetic relaxation characteristics of a single-molecule magnet, including the dependence of AC magnetic susceptibility on temperature and frequency. Magnetic relaxation can be described by the combination of thermally active Orbach and temperature-independent quantum tunneling processes. The application of a static magnetic field effectively suppressed the relaxation due to quantum tunneling.

3.
Angew Chem Int Ed Engl ; 59(50): 22446-22450, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-32856378

RESUMO

The structural phase of a metal oxide changes with temperature and pressure. During phase transitions, component ions move in multidimensional metal-oxygen networks. Such macroscopic structural events are robust to changes in particle size, even at scales of around 10 nm, and size effects limiting these transitions are particularly important in, for example, high-density memory applications of ferroelectrics. In this study, we examined structural transitions of the molecular metal oxide [Na@(SO3 )2 (n-BuPO3 )4 MoV 4 MoVI 14 O49 ]5- (Molecule 1) at approximately 2 nm by using single-crystal X-ray diffraction analysis. The Na+ encapsulated in the discrete metal-oxide anion exhibited a reversible order-disorder transition with distortion of the Mo-O molecular framework induced by temperature. Similar order-disorder transitions were also triggered by chemical pressure induced by removing crystalline solvent molecules in the single-crystal state or by substituting the countercation to change the molecular packing.

4.
Dalton Trans ; 47(23): 7656-7662, 2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29774354

RESUMO

Newly prepared single crystals of [Co(ii)(dabco)(NCS)2(MeOH)2]·dabco (1-pink; dabco: 1,4-diazabicyclo[2.2.2]octane) showed chromotropic behaviour in the solid state, changing from pink to blue upon heating or grinding. The complex 1-pink exhibited a two-dimensional orthogonal network structure with the coordination chain of -dabco-Co- bridged by hydrogen bonds between coordinative methanol and a second dabco molecule, where the methanol molecule was trapped by coordinative and hydrogen bonds. Chromism was demonstrated to stem from the quantitative desorption of methanol from 1-pink to produce [Co(ii)(dabco)(NCS)2]·dabco (1-blue(c)) by thermogravimetric (TG) and temperature controlled gas chromatography-mass spectrometry (GC-MS) analyses, and powder X-ray diffraction (XRD) analysis suggests that the transformation between the crystalline phases of 1-pink and 1-blue(c) occurred with similar lattice parameters. Furthermore, the desolvated species showed chemo-chromic behaviour due to the selective size- and polarity-dependent adsorption of solvent molecules.

5.
New J Chem ; 40(10): 8488-8492, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30078986

RESUMO

We report the electrochemical activity and the mechanism of formation of a mixed valence polyoxometalate-based organic hybrid cluster with the formula [Na(SO3)2(PhPO3)4MoV4MoVI14O49]5- (1). Electrochemical investigations of the mixed valence compound 1 showed three redox couples, in which the electrons were mainly delocalized over eight Mo sites. Furthermore, the synthesis was investigated using 31P-NMR, which showed that the self-assembly of cluster 1 was triggered by the addition of organic solvents, and was largely independent of the nature of the solvents, suggesting that a decrease in the concentration of water promoted cluster assembly. Finally the stability of 1 was explored and we concluded that the use of phenylphosphonate allowed the covalent stabilization of the [MoV4MoVI14] core.

6.
J Am Chem Soc ; 137(20): 6524-30, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-25897816

RESUMO

The reduction of solutions of acidified molybdate leads to the formation of a family of nanostructured molybdenum blue (MB) wheels which are linked together in a series of complex reaction networks. These networks are complex because the species which define the nodes are extremely labile, unstable, and common to many different networks. Herein, we combine gel electrophoresis and electrospray ionization mass spectrometry (ESI-MS) to investigate the effect of the pH and the ratio of reactants and reducing agents, R (R = [S2O4(2-)]/[MoO4(2-)]), on the complex underlying set of equilibria that make up MBs. By mapping the reaction parameter space given by experimental variables such as pH, R, solvent medium, and type of counterion, we show that the species present range from nanostructured MB wheels (comprising ca. 154 Mo atoms) to smaller molecular capsules, [(SO3)2Mo(V)2Mo(VI)16O54](6-) ({S2Mo18}), and templated hexameric [(µ6-SO3)Mo(V)6O15(µ2-SO3)3](8-)({S4Mo6}) anions. The parallel effects of templation and reduction on the self-assembly process are discussed, taking into consideration the Lewis basicity of the template, the oxidation state of the Mo centers, and the polarity of the reaction medium. Finally, we report a new type of molecular cage (TBA)5[Na(SO3)2(PhPO3)4Mo(V)4Mo(VI)14O49]·nMeCN (1), templated by SO3(2-) anions and decorated by organic ligands. This discovery results from the exploration of the cooperative effect of two anions possessing comparable Lewis basicity, and we believe this constitutes a new synthetic approach for the design of new nanostructured molecular metal oxides and will lead to a greater understanding of the complex reaction networks underpinning the assembly of this family of nanoclusters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...