Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Int J Phytoremediation ; : 1-14, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967334

RESUMO

While phytoremediation has been widely employed for greywater treatment, this system suffers from the transfer of considerable amounts of surfactants to the aquatic environment through partially treated effluent and/or exhausted plant disposal. Hence, this study focuses on greywater phytoremediation followed by recycling the spent plant for preparing an adsorbent material used as post-treatment. P. crassipes was used to operate a phytoremediation unit under 23 °C, 60% relative humidity, plant density (5-30 g/L), dilution (0-50%), pH (4-10), and retention time (3-15 days). The optimum condition was 12.7 g/L density, 34.0% dilution, pH 8.4, and 13 days, giving chemical oxygen demand (COD), surfactant, and NH4-N removal efficiencies of 94.62%, 90.45%, and 88.09%, respectively. The exhausted plant was then thermally treated at 550 °C and 40 min to obtain biochar used as adsorbent to treat the phytoremediation effluent. The optimum adsorption process was biochar dosage of 1.51 g/L, pH of 2.1, and 137 min, providing a surfactant removal efficiency of 92.56%. The final discharge of this phytoremediation/adsorption combined process contained 8.30 mg/L COD, 0.23 mg/L surfactant, and 0.94 mg/L NH4+-N. Interestingly, this approach could be economically feasible with a payback period of 6.5 years, 14 USD net present value, and 8.6% internal rate of return.


The research succeeded in treating greywater by phytoremediation followed by recycling the exhausted P. crassipes plant to prepare an adsorbent material used in the post-treatment phase, giving an economically feasible scenario with 6.5-year payback period.

2.
Water Res ; 253: 121260, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38354661

RESUMO

The excited triplet-state of dissolved organic matter (3DOM*) is a major reactive intermediate in sunlit waters. Its quantum yield is important in understanding the fate of organic micropollutants. The degradation efficiency of its chemical probe, 2,4,6-trimeythlphenol (fTMP), is generally used as a proxy of the quantum yield. However, fTMP has been described and modelled only for freshwater systems. Therefore, this study quantified fTMP in inland freshwater and coastal seawater sampled in Japan by conducting steady-state photochemical experiments. Optical properties of water were then used to model fTMP. Results indicated that the inland freshwater DOM originated mainly from terrestrial sources, while the coastal seawater DOM were microbial-dominated. On average, inland freshwater exhibited lower fTMP (61.2 M-1) than coastal seawater (79.7 M-1) and the coastal seawater exhibited significant variations in the proportion of high-energy 3DOM* (> 250 kJ/mol). In addition, E2:E3 (ratio of absorbance at 254 to 365 nm) was positively correlated with fTMP of inland freshwater, coastal seawater, and the overall dataset. Catchment conditions such as forest coverage also influenced the production of 3DOM* and high-energy 3DOM* in inland freshwater. Furthermore, the developed models estimated fTMP based on the optical properties of both freshwater and seawater, providing valuable insights about 3DOM* photochemistry in the aquatic environment.


Assuntos
Matéria Orgânica Dissolvida , Poluentes Químicos da Água , Água Doce/química , Água do Mar/química , Água/química , Poluentes Químicos da Água/química
3.
Anal Chem ; 96(1): 522-530, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38127714

RESUMO

Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) in the absorption mode has a superior performance over the conventional magnitude mode. However, this improved performance for the analysis of dissolved organic matter (DOM) in negative-ion and positive-ion modes of electrospray ionization [ESI(-) and ESI(+), respectively] remains unknown. This study systemically compared the improved performance by the absorption mode for DOM FT-ICR MS spectra acquired with the low-field and high-field magnet instruments between two charge modes. The absorption mode enhanced the resolution and signal-to-noise ratio values of DOM peaks with factors of 1.88-1.94 and 1.60-1.72, respectively. The significantly higher improvement of mass resolution for the ESI(+) mode than that for the ESI(-) mode could resolve the extensive occurrence of mass doublets in the ESI(+) mode, yielding some formulas exclusively identified in the ESI(+) mode. The findings of this study have systemically demonstrated the superiority of the absorption mode in improving the spectra quality during the routine FT-ICR MS postdata analysis and highlighted its great potential in characterizing the molecular composition of DOM using the FT-ICR MS technique in both ESI(-) and ESI(+) modes.

4.
Environ Sci Technol ; 58(1): 816-825, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38111239

RESUMO

Isotopically labeled FT-ICR-MS combined with multiple post-analyses, including interpretable machine learning (IML) and a paired mass distance (PMD) network, was employed to unravel the reactivity and transformation of natural organic matter (NOM) during ultraviolet (UV) irradiation. FT-ICR-MS analysis was used to assign formulas, which were classified on the basis of their molecular compositions and structural categories. Isotope (deuterium, D) labeling was utilized to unequivocally determine the photochemical products and examine the development of OD radical-mediated NOM transformation. With regard to the reactive molecular formulas, CHOS formulas exhibited the highest reactivity (86.5% of precursors disappeared) followed by CHON (53.4%) and CHO (24.6%) formulas. With regard to structural categories, the degree of reactivity decreased in the following order: tannins > condensed aromatics > lignin/CRAMs. The IML algorithm demonstrated that the crucial features governing the reactivity of formulas were the molecular weight, DBE-O, NOSC, and the presence of heteroatoms (i.e., N and S), suggesting that the large and unsaturated compounds containing S and N are more prone to photodegradation. The reactomics approach using the PMD network further indicated that 11 specific molecular formulas in the CHOS and CHO class served as hubs, implying a higher photoreactivity and participation in a range of transformations. The isotope labeling analyses also found that, among the reactions observed, hydroxylation (i.e., +OD) is dominant for lignin/CRAMs and condensed aromatics, and formulas containing ≤10 D atoms were developed. Overall, this study, by adopting rigorous and interpretable techniques, could provide in-depth insights into the molecular-level dynamics of NOM under UV irradiation.


Assuntos
Lignina , Raios Ultravioleta , Fotólise
5.
Water Res ; 246: 120694, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37832250

RESUMO

Halogenated organic compounds (HOCs), widely present in various environments, are generally formed by natural processes (e.g., photochemical halogenation) and anthropogenic activities (e.g., water disinfection and anthropogenic discharge of HOCs), posing health and environmental risks. Therefore, in-depth knowledge of the molecular composition, transformation, and fate of HOCs is crucial to regulate and reduce their formation. Because of the extremely complex nature of HOCs and their precursors, the molecular composition of HOCs remains largely unknown. The Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) offers the most powerful resolution and mass accuracy for the simultaneous molecular-level characterization of HOCs and their precursors. However, there is still a paucity of reviews regarding the comprehensive characterization of HOCs by FT-ICR MS. Based on the FT-ICR MS, the formation mechanism, sample pretreatment, and analysis methods were summarized for two typical HOCs classes, namely halogenated disinfection byproducts and per- and polyfluoroalkyl substances in this review. Moreover, we have highlighted data analysis methods and some typical applications of HOCs using FT-ICR MS and proposed suggestions for current issues. This review will deepen our understanding of the chemical characterization of HOCs and their formation mechanisms and transformation at the molecular level in aquatic systems, facilitating the application of the state-of-the-art FT-ICR MS in environmental and geochemical research.


Assuntos
Ciclotrons , Compostos Orgânicos , Análise de Fourier , Espectrometria de Massas , Compostos Orgânicos/análise , Água
6.
Water Res ; 244: 120456, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37579568

RESUMO

Man-made reservoirs are important for human daily lives and offer different functions, however they are contaminated due to anthropogenic activities. Dissolved organic matter (DOM) from each reservoir is unique in composition, which further determines its photo-reactivity. Thus, this study aimed to investigate the photo-reactivity of reservoir DOM in terms of the quantum yield for photo-production of singlet oxygen (Ф1O2). We sampled surface water of 50 reservoirs in Japan and determined their Ф1O2 using simulated sunlight together with bulk water analysis. Their Ф1O2 ranged from 1.46 × 10-2 to 6.21 × 10-2 (mean, 2.55 × 10-2), which was identical to those of lakes and rivers reported in the literature, but lower than those of wetland water and wastewater. High-energy triplet-state of DOM accounted for 59.4% of the 1O2 production in the reservoir water on average. Among the bulk water properties, the spectral slope of wavelength from 350 to 400 nm (S350-400) was statistically detected as the most important predictor for Ф1O2. Furthermore, the multiple linear regression model employed S350-400 and the biological index as predictors with no intercorrelations and reasonable accuracy (r2 = 0.86), while the random forest model showed a better accuracy (r2 = 0.90). Overall, these major findings are beneficial for understanding the photo-reactivity of reservoir waters.


Assuntos
Oxigênio Singlete , Água , Humanos , Rios , Águas Residuárias , Luz Solar , Fotólise
7.
Chemosphere ; 339: 139766, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37562503

RESUMO

The unprecedented recent expansion in usage of paracetamol (AAP) has increased the need for suitable wastewater treatment technology. Furthermore, direct interspecies electron transfer promotion (DIET) offers simple and efficient approach for enhancing anaerobic digestion (AD). In this work, using AAP-containing domestic wastewater as feed, control AD reactor (RC) was operated, besides three DIET-promoted AD reactors (REV, RMC and REVMC, referring to electrical voltage "EV"-applied, nFe3O4-multiwall carbon nanotube (MCNT)-supplemented, and "EV applied + MCNT supplemented" reactor, respectively). Maximal treatable organic loading rates by RC, REV, RMC and REVMC were 3.9, 3.9, 7.8 and 15.6 g COD/L/d, corresponding to AAP loading rate of 26, 78, 156 and 312 µg/L/d, respectively. Methane production rate generated by RC, REV, RMC and REVMC reached 0.80 ± 0.01, 0.86 ± 0.04, 1.40 ± 0.07, and 3.01 ± 0.17 L/L/d, respectively. AAP expectedly followed hydroquinone degradation pathway, causing AD failure by acetate accumulation. However, this performance deterioration could be mitigated by DIET-promoted microbes with higher methanogenic activity and advanced electric conductivity. Economic evaluation revealed the favourability of MCNT addition over EV application, since payback periods for RC, REV, RMC and REVMC were 6.2, 7.7, 4.2 and 5.0 yr, respectively.


Assuntos
Esgotos , Águas Residuárias , Anaerobiose , Reatores Biológicos , Preparações Farmacêuticas , Metano
8.
Environ Sci Technol ; 57(11): 4690-4700, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36905367

RESUMO

The formula assignment of the Fourier transform ion cyclotron resonance mass spectrometry coupled with positive-ion electrospray ionization [ESI(+)-FT-ICR MS] is challenging because of the extensive occurrence of adducts. However, there is a paucity of automated formula assignment methods for ESI(+)-FT-ICR MS spectra. The novel automated formula assignment algorithm for ESI(+)-FT-ICR MS spectra developed herein has been applied to elucidate the composition of dissolved organic matter (DOM) in groundwater during air-induced ferrous [Fe(II)] oxidation. The ESI(+)-FT-ICR MS spectra of groundwater DOM were profoundly impacted by [M + Na]+ adducts and, to a lesser extent, [M + K]+ adducts. Oxygen-poor and N-containing compounds were frequently detected when the FT-ICR MS was operated in the ESI(+) mode, while the components with higher carbon oxidation states were preferentially ionized in the negative-ion electrospray ionization [ESI(-)] mode. Values for the difference between double-bond equivalents and the number of oxygen atoms from -13 to 13 are proposed for the formula assignment of the ESI(+)-FT-ICR MS spectra of aquatic DOM. Furthermore, for the first time, the Fe(II)-mediated formation of highly toxic organic iodine species was reported in groundwater rich in Fe(II), iodide, and DOM. The results of this study not only shed light on the further algorithm development for comprehensive characterization of DOM by ESI(-)-FT-ICR MS and ESI(+)-FT-ICR MS but also highlight the importance of appropriate treatment of specific groundwater prior to use.


Assuntos
Água Subterrânea , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização por Electrospray/métodos , Matéria Orgânica Dissolvida , Oxigênio , Compostos Ferrosos
9.
Environ Res ; 220: 115272, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634893

RESUMO

The conversion of agricultural waste into high-value carbon products has been an attractive area in waste management strategy. This study highlighted the synthesis and effectiveness of green pea peels (GPP), green pea biochar (GPBC), and nano-ferromagnetic green pea biochar (NFGPBC) by the ferrous/ferric co-precipitation synthesis method for eliminating cationic dyes molecules from solutions. The morphological, physicochemical, and structural properties of GPP, GPBC, and NFGPBC were approved by Scanning Electron Microscopy (SEM), Transmission Emission Microscopy (TEM), Energy Dispersive X-ray (EDX), Bruneau Emmett Teller (BET), Fourier Transform Infrared spectroscopy (FTIR), and X-ray Diffraction (XRD) techniques. Vibrating Sample Magnetometry (VSM) analysis confirmed the NFGPBC magnetization performance. The capacity of each adsorbent for methylene blue removal was evaluated at various parameters of material dosage (50-250 mg/150 mL), pH (2-12), initial concentration (50-250 mg/L), contact time (0-90 min) and temperature (20-60 °C). The three developed adsorbent materials GPP, GPBC, and NFGPBC, possessed reasonable BET surface areas of 0.6836, 372.54, and 147.88 m2g-1, and the corresponding monolayer adsorption capacities of 163.93, 217.40, and 175.44 mg/g, respectively. The superior performances of GPBC and NFGPBC were due to their increased surface area compared with the parent green pea peels (GPP). The results from adsorption kinetics studies of all prepared materials were pseudo-second-order and Elovich kinetics models. The thermodynamic parameters exhibited MB sorption's favorability, spontaneity, and endothermic nature. The NFGPBC material experienced Vander Waal forces, electrostatic interaction, hydrogen bonding, and hydrophobic interactions as predominant modes of the solid-liquid interaction. The regeneration, recycling, and reusability of the synthesized GPP, GPBC, and NFGPBC performed at five adsorption cycles revealed that NFGPBC demonstrated excellent cyclical performances attaining a minimum 8.9% loss in capacity due to paramagnetic properties. Thus, NFGPBC is a green, efficient, and eco-friendly material recommended for large-scale production and application in wastewater.


Assuntos
Azul de Metileno , Poluentes Químicos da Água , Pisum sativum , Descontaminação , Carvão Vegetal/química , Adsorção , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Anal Chem ; 95(5): 2796-2803, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36688615

RESUMO

The alignment of ultrahigh-resolution mass spectra (UHR-MS) is critical to inspect the presence of unique and common peaks across multiple UHR-MS spectra. However, few attempts have been conducted to develop an automated alignment method. In this study, a novel automated alignment algorithm, namely, FTMSCombine, that follows a Gaussian distribution of mass errors was developed and then integrated with existing FTMSCalibrate and TRFu algorithms to establish an open-source analysis platform, namely, FTMSAnalysis, for the UHR-MS analysis of the dissolved organic matter. The developed FTMSCombine was capable of automatically aligning peaks across different UHR-MS spectra by averaging the m/z values of each peak cluster, although the alignment should be restricted to Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) spectra collected by instruments under similar conditions. The FTMSCombine exhibited an insignificant difference in the reproducibility of chemical formulae but significantly higher mass accuracy than the ICBM-OCEAN. In addition to improving the overall mass accuracy of the whole UHR-MS dataset, the FTMSCombine could effectively exclude scatters or noise peaks using an optional rule that restricts peaks (continuously) detected in at least a certain number of spectra in the UHR-MS spectra dataset. The successfully established FTMSAnalysis (freely available in the Supporting Information of this study) is of great potential in automatically analyzing UHR-MS spectra for dissolved organic matter (DOM) and will largely facilitate the elucidation of DOM chemodivesity by UHR-MS techniques including FTICR-MS.

11.
Water Res ; 229: 119488, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36538840

RESUMO

Understanding the composition and reactivity of dissolved organic matter (DOM) at molecular level is vital for deciphering potential regulators or indicators relating to anaerobic process performance, though it was hardly achieved by traditional analyses. Here, the DOM composition, molecular reactivity and transformation in the enhanced sludge fermentation process were comprehensively elucidated using high-resolution mass spectrometry measurement, and data mining with machine learning and paired mass distance (PMD)-based reactomics. In the fermentation process for dewatered sludge, persulfate (PDS) pretreatment presented its highest performance in improving volatile fatty acids (VFAs) production with the increase from 2,711 mg/L to 3,869 mg/L, whereas its activation in the presence of Fe (as well as the hybrid of Fe and activated carbon) led to the decreased VFAs production performance. In addition to the conventional view of improved decomposition and solubilization of N-containing structures from sludge under the sole PDS pretreatment, the improved VFAs production was associated with the alternation of DOM molecular compositions such as humification generating molecules with high O/C, N/C, S/C and aromatic index (AImod). Machine learning was capable of predicting the DOM reactivity classes with 74-76 % accuracy and found that these molecular parameters in addition to nominal oxidation state of carbon (NOSC) were among the most important variables determining the generation or disappearance of bio-resistant molecules in the PDS pretreatment. The constructed PMD-based network suggested that highly connected molecular network with long path length and high diameter was in favor of VFAs production. Especially, -NH related transformation was found to be active under the enhanced fermentation process. Moreover, network topology analysis revealed that CHONS compounds (e.g., C13H27O8N1S1) can be the keystone molecules, suggesting that the presence of sulfur related molecules (e.g., cysteine-like compounds) should be paid more attention as potential regulators or indicators for controlling sludge fermentation performance. This study also proposed the non-targeted DOM molecular analysis and downstream data mining for extending our understanding of DOM transformation at molecular level.


Assuntos
Matéria Orgânica Dissolvida , Esgotos , Fermentação , Esgotos/química , Anaerobiose , Espectrometria de Massas , Ácidos Graxos Voláteis
12.
Ind Health ; 61(5): 368-378, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36273913

RESUMO

Evidence of the impact of domain-specific sitting time (ST) and cardiorespiratory fitness (CRF) on cardiovascular disease (CVD) risk is currently limited. This study aimed to examine the associations between CRF and domain-specific STs in relation to CVD risk and annual healthcare costs among office workers. This cross-sectional study included 1,749 workers from an insurance company. The Worker's Living Activity-time Questionnaire was used to measure the domain-specific STs, including occupational ST and non-working day ST. Additionally, estimated maximal oxygen uptake as the CRF data was calculated using a validated equation: 59.96 - 0.23 × age + 7.39 × sex - 0.79 × body mass index + 0.33 × physical activity score. The company provided medical checkup results for CVD risk factors and healthcare costs. Multiple logistic regression analyses were used to calculate the odds ratios (ORs) for CVD risk. Significantly lower ORs for CVD risk were seen only with high CRF levels, and it was also associated with low annual healthcare costs. There were no associations between domain-specific STs and annual healthcare costs. Further explorations of domain-specific STs, physical activity, and health risks are warranted, and guidelines should focus on increasing CRF to prevent CVD risk among office workers.


Assuntos
Aptidão Cardiorrespiratória , Doenças Cardiovasculares , Humanos , Criança , Doenças Cardiovasculares/epidemiologia , Estudos Transversais , Exercício Físico , Custos de Cuidados de Saúde , Fatores de Risco , Aptidão Física
13.
J Clean Prod ; 372: 133812, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36061137

RESUMO

The intersectoral impacts of the COVID-19 pandemic on humanity raises concerns about its implications for sustainable development. Here, we examine a global quantitative impact of COVID-19 pandemic on Sustainable Development Goals (SDGs) across all 17 goals using 65 proxy indicators across 72 countries collected from April 2020 to February 2021. Our data-driven analysis indicated that adverse impacts of the pandemic have been particularly concerned on gender equality (Goal 5), affordable and clean energy (Goal 7), decent work and economic growth (Goal 8), sustainable cities and communities (Goal 11), and responsible consumption and production (Goal 12) with global scores estimated to be -0.38, -0.21, -0.28, -0.22 and -0.16, respectively. Country income level was a variable that strongly differentiates the responses to the pandemic (e.g., lower incomes had 14 negative goals compared to 11 and 4 negative goals assigned to middle- and high-income countries, respectively). However, Goals 5 and 8 were highly impacted worldwide regardless of income status. Furthermore, countries that had already higher performance in SDGs were less impacted by the pandemic, highlighting the importance of progress on the SDGs in increasing societal resilience to pandemics. The findings provide insights into the reinforcement of recovery policies (e.g., protecting vulnerable groups and transitioning to a green economy) and a basis for a quantitative discussion on the sectors to be prioritized.

14.
J Environ Manage ; 322: 116097, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36055101

RESUMO

Phytoremediation has been widely employed for industrial effluent treatment due to its cost-effectiveness and eco-friendliness. However, this process generates large amounts of exhausted plant biomass, requiring appropriate management strategies to avoid further environmental pollution. To the best of the authors' knowledge, this study is the first to address the recyclability of water hyacinth after textile wastewater (TWW) phytoremediation for dual biogas and biochar production. A hydroponic culture system was occupied by 163 g (plant mass) per L (TWW) and operated under 16:8 h light:dark cycle (sunlight), 70-80% relative humidity, and 22-25 °C temperature. This water hyacinth-based system achieved chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), and dye removal efficiencies of 58.60 ± 2.63%, 35.27 ± 1.65%, and 38.49 ± 2.24%, respectively, at a TWW fraction of 100 %v/v. The plant characterization study revealed that phytoabsorption and phytoextraction could be the main mechanisms involved in TWW pollution reduction. The lignin and hemicellulose of water hyacinth were slightly degraded during phytoremediation, making the cellulose fibers simply accessible to enzymes' attack in the subsequent anaerobic digestion process. This hypothesis was validated by increasing the crystallinity index from 50.13% to 60.21% during TWW phytoremediation. The spent plant was cleaned and then co-digested (37 °C) with cow dung at 1:1 (w/w, dry basis) for bioenergy production. The generated biogas was 162.78 ± 8.34 mL CH4/g COD (i.e., 225.63 ± 11.36 mL CH4/g volatile solids), representing about 490% higher than the utilization of raw water hyacinth in a mono-digestion process. The pyrolysis of digestate-containing plant residues yielded biochar with concentrated cationic macroelements (K+, Mg2+, and Ca2+). The economic feasibility of the phytoremediation/co-digestion/pyrolysis combined system showed an initial investment of 2090 USD and a payback period of 9.08 yr. Because the project succeeded in recovering the cost of its initial investment, it could fulfill the targets of several sustainable development goals related to economic profitability, social acceptance, and environmental protection.


Assuntos
Biocombustíveis , Eichhornia , Amônia/metabolismo , Anaerobiose , Carvão Vegetal , Lignina/metabolismo , Metano , Nitrogênio/metabolismo , Têxteis , Águas Residuárias
15.
Chemosphere ; 307(Pt 1): 135716, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35853514

RESUMO

A simple and cost-effective route has been utilized for the preparation of a novel lamellar structured FeOCl/g-C3N5 nanocomposite as Z-scheme photocatalyst. The preparation method was performed under the ambient temperature conditions without any hazardous chemicals. Various characterization techniques, namely XRD, FESEM, TEM, FT-IR, UV-Vis, DRS, and PL were carried out to analyse the nanocomposite for confirmation of FeOCl/g-C3N5 nanocomposite. To evaluate its and visible light degradation performances tetracycline (T-C) was used as target pollutant. Among the optimum loading for the g-C3N5 incorporated FeOCl binary nanocomposites, the g-C3N5/FeOCl exhibited a superlative degradation performance toward the T-C antibiotic pollutant. The results confirmed that 95% of T-C was degraded within 40 min under photodegradation mechanism. The improved photodegradation performance in degradation of T-C was mainly due to the reduction in electron-hole recombination, broadening in the light absorption by g-C3N5 incorporation, which leads to shortening the degradation time. Furthermore, the hydroxyl and superoxide radicals played a major role in the photodegradation process and the possible mechanism was elucidated and proposed. The present work implies a novel, sustainable, and efficient Z-scheme system that may deliver a convenient method for environment remediation.


Assuntos
Cytisus , Poluentes Ambientais , Nanocompostos , Antibacterianos , Catálise , Substâncias Perigosas , Luz , Nanocompostos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Superóxidos , Tetraciclina/química
16.
Anal Chem ; 94(30): 10589-10594, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35862549

RESUMO

In order to obtain a spectrum with high mass accuracy, an internal calibration of Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) is inevitable. This in turn is critical for subsequent data processing and is generally performed using the commercial instrument software DataAnalysis in the benchmark calibration mode. However, no methodological study has systemically addressed the automated internal calibration of FTICR-MS spectra for dissolved organic matter (DOM) from different sources such as terrestrial and aquatic environments. In this study, a new piecewise algorithm, FTMSCalibrate, was developed to automatically calibrate FTICR-MS spectra in both positive and negative ion modes. FTMSCalibrate was found to reproduce 91.7% ± 4.4% (referred to as the true positive ratio) of the chemical formulas obtained by calibration using manual DataAnalysis. In addition to significantly reducing the mass error, FTMSCalibrate is more accurate in terms of the molecular formula assignment for low m/z peaks than Formularity and MFAssignR. FTMSCalibrate was compatible with deprotonated ions for FTICR-MS spectra in the negative ion mode as well as protonated and adduct ions, including Na- and K-adducts, for FTICR-MS spectra in the positive ion mode. These results suggest that FTMSCalibrate publicly available herein is a robust alternative for the internal calibration of FTICR-MS spectra during postdata processing and will facilitate DOM analysis by FTICR-MS.


Assuntos
Matéria Orgânica Dissolvida , Espectrometria de Massas por Ionização por Electrospray , Algoritmos , Calibragem , Análise de Fourier , Espectrometria de Massas por Ionização por Electrospray/métodos
17.
Environ Res ; 212(Pt D): 113494, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35660404

RESUMO

Onion skin waste (OSW) is common waste in developing countries, which can cause severe environmental pollution when not properly treated. Value-added products can be chemically extracted from OSW; however, that process is not economically feasible. Alternatively, dry anaerobic digestion (DAD) of OSW is a promising approach for both energy recovery and environment protection. The main hurdles during DAD of OSW can be the hydrolysis and acidification. In batch tests, sludge digestate (SD) rich with methanogens was co-digested with different fractions of OSW for enhancing hydrolysis and raising biogas productivity. The cumulative biogas production (CBP) was 36.6 ± 0.3 mL for sole DAD of SD (100% SD) and increased up to 281.9 ± 14.1 mL for (50% SD: 50% OSW) batch. Self-delignification of OSW took place by SD addition, where the lignin removal reached 75.3 ± 10.5% for (85% SD: 15% OSW) batch. Increasing the fraction of OSW (45% SD: 55% OSW) reduced the delignification by a value of 68.8%, where initial lignin concentration was 9.48 ± 1.6% in dry weight. Lignin breaking down resulted a high fraction of phenolic compounds (345.6 ± 58.8 mg gallic acid equivalent/g dry weight) in the fermentation medium, causing CBP drop (219.0 ± 28.5 mL). The presence of elements (K, Ca, Mg, Fe, Zn, Mn, S and P) in OSW improved the enzymatic activity, facilitated phenolic compounds degradation, shifted the metabolism towards acetate fermentation pathway, and raised biogas productivity. Acidogenesis was less affected by phenolic compounds than methanogenesis, causing higher H2 contents and lower CH4 contents, at batches with high share of OSW.


Assuntos
Biocombustíveis , Cebolas , Anaerobiose , Reatores Biológicos , Lignina , Metano , Cebolas/química , Esgotos
18.
Chemosphere ; 305: 135375, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35738200

RESUMO

Microalgae-based wastewater treatment has previously been carried out in huge waste stabilization ponds. Microalgae, which can absorb carbon dioxide while reusing nutrients from sewage, has recently emerged as a new trend in the wastewater treatment business. Microalgae farming is thought to be a potential match for the modern world's energy strategy, which emphasizes low-cost and environmentally benign alternatives. Microalgae are being used to treat wastewater and make useful products. Microalgae, for example, is a promising renewable resource for producing biomass from wastewater nutrients because of its quick growth rate, short life span, and high carbon dioxide utilization efficacy. Microalgae-based bioremediation has grown in importance in the treatment of numerous types of wastewater in recent years. This solar-powered wastewater treatment technology has huge potential. However, there are still issues to be resolved in terms of land requirements, as well as the process's ecological feasibility and long-term viability, before these systems can be widely adopted. Due to cost and the need for a faultless downstream process, it is difficult to deploy this technology on a large scale. Other recent breakthroughs in wastewater microalgae farming have been investigated, such as how varied pressures affect microalgae growth and quality, as well as the number of high-value components produced. In this review, the future of this biotechnology has also been examined.


Assuntos
Metais Pesados , Microalgas , Biocombustíveis , Biomassa , Dióxido de Carbono , Águas Residuárias
19.
Environ Res ; 213: 113736, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35750121

RESUMO

Removal of organic pollutants and pharma products in waste water using semiconductor photocatalysts has gained huge interest among recent days. However, low visible light absorption, recombination rate of charge carriers and less availability of reaction sites are still major obstacles for the photocatalysis process. Herein, an in situ-forming Bi4O5Br2 nanosheets decorated on the surface g-C3N5 were prepared via simple hydrothermal method under ambient temperature. The basic pH condition plays a vital role in growing for Bi4O5Br2 nanosheets. Various characterization studies such as TEM, SEM, PL and UV-DRS studies confirmed the formation of close contact between the Bi4O5Br2 and g-C3N5 nanosheets. The construction of Bi4O5Br2 nanoplatelets/g-C3N5 nanocomposite increases the surface-active sites and improving the separation efficiencies of excitons, which is greatly influenced in the degradation of ciprofloxacin and bisphenol-A pollutants. Meanwhile, the flow of electrons from the layered structured graphite carbon of g-C3N5 which enables excellent electrical contact in the heterojunction. Besides, the main free radicals were determined as e- and •O2-, and production level of free radicals were confirmed by radical trapping experiments. The possible degradation mechanism was proposed and discussed. Finally, this work provides a unique approach to in-situ preparation of heterojunction photocatalysts and demonstrates the prepared Bi4O5Br2 nanoplatelets/g-C3N5 photocatalysts have great potential in the waste water management.


Assuntos
Poluentes Ambientais , Grafite , Nanocompostos , Catálise , Grafite/química , Nanocompostos/química , Águas Residuárias/química
20.
Sci Total Environ ; 817: 152967, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35016947

RESUMO

This study aims to elucidate the role of sulfide and its precursors in anaerobic digestion (i.e., cysteine, representing sulfur-containing amino acids, and sulfate) on microbial oleate conversion to methane. Serine, with a similar structure to cysteine but with a hydroxyl group instead of a thiol, was included as a control to assess potential effects on methane formation that were not related to sulfur functionalities. The results showed that copresence of sulfide and oleate in anaerobic batch assays accelerated the methane formation compared to assays with only oleate and mitigated negative effect on methane formation caused by increased sulfide level. Nuclear magnetic resonance spectroscopy of sulfide-exposed oleate suggested that sulfide reaction with oleate double bonds likely contributed to negation of the negative effect on the methanogenic activity. Methane formation from oleate was also accelerated in the presence of cysteine or serine, while sulfate decreased the cumulative methane formation from oleate. Neither cysteine nor serine was converted to methane, and their accelerating effects was associated to different mechanisms due to establishment of microbial communities with different structures, as evidenced by high-throughput sequencing of 16S rRNA gene. These outcomes contribute with new knowledge to develop strategies for optimum use of sulfur- and lipid-rich wastes in anaerobic digestion processes.


Assuntos
Metano , Ácido Oleico , Anaerobiose , Reatores Biológicos , Cisteína/metabolismo , Ácidos Graxos/metabolismo , Metano/metabolismo , Ácido Oleico/metabolismo , RNA Ribossômico 16S , Serina/metabolismo , Sulfatos , Sulfetos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...