Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 12312, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35853994

RESUMO

Currently, ERY974, a humanized IgG4 bispecific T cell-redirecting antibody recognizing glypican-3 and CD3, is in phase I clinical trials. After a first-in-human clinical trial of an anti-CD28 agonist monoclonal antibody resulting in severe life-threatening adverse events, the minimal anticipated biological effect level approach has been considered for determining the first-in-human dose of high-risk drugs. Accordingly, we aimed to determine the first-in-human dose of ERY974 using both the minimal anticipated biological effect level and no observed adverse effect level approaches. In the former, we used the 10% effective concentration value from a cytotoxicity assay using the huH-1 cell line with the highest sensitivity to ERY974 to calculate the first-in-human dose of 4.9 ng/kg, at which maximum drug concentration after 4 h of intravenous ERY974 infusion was equal to the 10% effective concentration value. To determine the no observed adverse effect level, we conducted a single-dose study in cynomolgus monkeys that were intravenously infused with ERY974 (0.1, 1, and 10 µg/kg). The lowest dose of 0.1 µg/kg was determined as the no observed adverse effect level, and the first-in-human dose of 3.2 ng/kg was calculated, considering body surface area and species difference. For the phase I clinical trial, we selected 3.0 ng/kg as a starting dose, which was lower than the first-in-human dose calculated from both the no observed adverse effect level and minimal anticipated biological effect level. Combining these two methods to determine the first-in-human dose of strong immune modulators such as T cell-redirecting antibodies would be a suitable approach from safety and efficacy perspectives.Clinical trial registration: JapicCTI-194805/NCT05022927.


Assuntos
Anticorpos Biespecíficos , Glipicanas , Linfócitos T , Anticorpos Biespecíficos/administração & dosagem , Relação Dose-Resposta Imunológica , Glipicanas/imunologia , Humanos , Linfócitos T/imunologia
2.
Cancer Res ; 79(22): 5734-5745, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31391186

RESUMO

Targeting genetic alterations of oncogenes by molecular-targeted agents (MTA) is an effective approach for treating cancer. However, there are still no clinical MTA options for many cancers, including esophageal cancer. We used a short hairpin RNA library to screen for a new oncogene in the esophageal cancer cell line KYSE70 and identified YES proto-oncogene 1 (YES1) as having a significant impact on tumor growth. An analysis of clinical samples showed that YES1 gene amplification existed not only in esophageal cancer but also in lung, head and neck, bladder, and other cancers, indicating that YES1 would be an attractive target for a cancer drug. Because there is no effective YES1 inhibitor so far, we generated a YES1 kinase inhibitor, CH6953755. YES1 kinase inhibition by CH6953755 led to antitumor activity against YES1-amplified cancers in vitro and in vivo. Yes-associated protein 1 (YAP1) played a role downstream of YES1 and contributed to the growth of YES1-amplified cancers. YES1 regulated YAP1 transcription activity by controlling its nuclear translocation and serine phosphorylation. These findings indicate that the regulation of YAP1 by YES1 plays an important role in YES1-amplified cancers and that CH6953755 has therapeutic potential in such cancers. SIGNIFICANCE: These findings identify the SRC family kinase YES1 as a targetable oncogene in esophageal cancer and describe a new inhibitor for YES1 that has potential for clinical utility.See related commentary by Rai, p. 5702.


Assuntos
Amplificação de Genes , Oncogenes , Linhagem Celular Tumoral , Genes src , Proteínas Proto-Oncogênicas c-yes
3.
Mol Cancer Ther ; 17(12): 2519-2529, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30242093

RESUMO

Members of the tropomyosin receptor kinase (TRK) family are expressed in their constitutively activated forms as a result of a gene fusion that occurs across a wide variety of cancer types. We have identified CH7057288 as a potent and selective TRK inhibitor that belongs to a novel chemical class. CH7057288 showed selective inhibitory activity against TRKA, TRKB, and TRKC in cell-free kinase assays and suppressed proliferation of TRK fusion-positive cell lines, but not that of TRK-negative cell lines. Strong in vivo tumor growth inhibition was observed in subcutaneously implanted xenograft tumor models of TRK fusion-positive cells. Furthermore, in an intracranial implantation model mimicking brain metastasis, CH7057288 significantly induced tumor regression and improved event-free survival. Recently, resistant mutations in the kinase domain of TRK have been reported in patients who show disease progression after treatment with the TRK inhibitors now under clinical development. Our compound maintained similar levels of in vitro and in vivo activity against one of these resistant mutants as it did to wild-type TRK. An X-ray crystal structure of the TRKA and CH7057288 complex supported the activity against the mutant. In addition, gene expression analysis revealed that CH7057288 suppressed MAPK and E2F pathways as downstream signaling of TRK fusion. Therefore, CH7057288 could be a promising therapeutic agent for TRK fusion-positive cancer.


Assuntos
Benzofuranos/farmacologia , Neoplasias/patologia , Proteínas de Fusão Oncogênica/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação/genética , Proteínas Quinases/química , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Mol Cancer Ther ; 17(10): 2217-2225, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30045926

RESUMO

FGFR2 gene is frequently amplified in gastric cancer. Recently, targeting FGFR2 has drawn attention as a form of gastric cancer therapy, and FGFR-selective inhibitors have shown promising efficacy in clinical studies. Because overcoming acquired resistance is a common problem with molecular targeting drugs, we investigated a resistant mechanism of FGFR inhibitors using the gastric cancer cell line SNU-16, which harbors FGFR2 amplification. We established single-cell clones of FGFR inhibitor-resistant SNU-16 (AZD-R) by continuous exposure to AZD4547, a selective FGFR inhibitor. To screen the genetic alterations acquired in AZD-R, we ran a comparative genomic hybridization assay and found an amplification of Chr7q34 region. The chromosomal breakpoints were located between the 12th and the 13th exon of jumonji C domain containing histone demethylase 1 homolog D (JHDM1D) and between the 3rd and the 4th exon of BRAF We sequenced cDNA of the AZD-R clones and found fusion kinase JHDM1D-BRAF, which has previously been identified in primary ovarian cancer. Because JHDM1D-BRAF fusion lacks a RAS-binding domain, the dimerization of JHDM1D-BRAF was enhanced. A cell growth inhibition assay using MEK inhibitors and RAF-dimer inhibitors indicated the dependence of AZD-R clones for growth on the MAPK pathway. Our data provide a clinical rationale for using a MEK or RAF dimer inhibitor to treat FGFR2-amplified gastric cancer patients who have acquired resistance through the JHDN1D-BRAF fusion. Mol Cancer Ther; 17(10); 2217-25. ©2018 AACR.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Amplificação de Genes , Histona Desmetilases com o Domínio Jumonji/genética , Proteínas de Fusão Oncogênica/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Neoplasias Gástricas/genética , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Hibridização Genômica Comparativa , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia
5.
Sci Transl Med ; 9(410)2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28978751

RESUMO

Cancer care is being revolutionized by immunotherapies such as immune checkpoint inhibitors, engineered T cell transfer, and cell vaccines. The bispecific T cell-redirecting antibody (TRAB) is one such promising immunotherapy, which can redirect T cells to tumor cells by engaging CD3 on a T cell and an antigen on a tumor cell. Because T cells can be redirected to tumor cells regardless of the specificity of T cell receptors, TRAB is considered efficacious for less immunogenic tumors lacking enough neoantigens. Its clinical efficacy has been exemplified by blinatumomab, a bispecific T cell engager targeting CD19 and CD3, which has shown marked clinical responses against hematological malignancies. However, the success of TRAB in solid tumors has been hampered by the lack of a target molecule with sufficient tumor selectivity to avoid "on-target off-tumor" toxicity. Glypican 3 (GPC3) is a highly tumor-specific antigen that is expressed during fetal development but is strictly suppressed in normal adult tissues. We developed ERY974, a whole humanized immunoglobulin G-structured TRAB harboring a common light chain, which bispecifically binds to GPC3 and CD3. Using a mouse model with reconstituted human immune cells, we revealed that ERY974 is highly effective in killing various types of tumors that have GPC3 expression comparable to that in clinical tumors. ERY974 also induced a robust antitumor efficacy even against tumors with nonimmunogenic features, which are difficult to treat by inhibiting immune checkpoints such as PD-1 (programmed cell death protein-1) and CTLA-4 (cytotoxic T lymphocyte-associated protein-4). Immune monitoring revealed that ERY974 converted the poorly inflamed tumor microenvironment to a highly inflamed microenvironment. Toxicology studies in cynomolgus monkeys showed transient cytokine elevation, but this was manageable and reversible. No organ toxicity was evident. These data provide a rationale for clinical testing of ERY974 for the treatment of patients with GPC3-positive solid tumors.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Glipicanas/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Linfócitos T/imunologia , Animais , Anticorpos Biespecíficos/administração & dosagem , Anticorpos Biespecíficos/farmacocinética , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Complexo CD3/metabolismo , Citocinas/metabolismo , Humanos , Imunocompetência/efeitos dos fármacos , Injeções Intravenosas , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Macaca fascicularis , Camundongos Transgênicos , Esteroides/farmacologia , Esteroides/uso terapêutico , Linfócitos T/efeitos dos fármacos
6.
Cancer Chemother Pharmacol ; 79(6): 1187-1193, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28447210

RESUMO

PURPOSE: Although treatment of melanoma with BRAF inhibitors and immune checkpoint inhibitors achieves a high response rate, a subset of melanoma patients with intrinsic and acquired resistance are insensitive to these therapeutics, so to improve melanoma therapy other target molecules need to be found. Here, we screened our chemical library to identify an anti-melanoma agent and examined its action mechanisms to show cell growth inhibition activity. METHODS: We screened a chemical library against multiple skin cancer cell lines and conducted ingenuity pathway analysis (IPA) to investigate the mechanisms of CH5552074 activity. Suppression of microphthalmia-associated transcription factor (MITF) expression levels was determined in melanoma cells treated with CH5552074. Cell growth inhibition activity of CH5552074 was evaluated in MITF-dependent melanoma cell lines. RESULTS: We identified an anti-melanoma compound, CH5552074, which showed remarkable cell growth inhibition activity in melanoma cell lines. The IPA results suggested that CH5552074-sensitive cell lines had activated MITF. In further in vitro studies in the melanoma cell lines, a knockdown of MITF with siRNA resulted in cell growth inhibition, which showed that CH5552074 inhibited cell growth by reducing the expression level of MITF protein. CONCLUSIONS: These results suggest that CH5552074 can inhibit cell growth in melanoma cells by reducing the protein level of MITF. MITF inhibition by CH5552074 would be an attractive option for melanoma treatment.


Assuntos
Antineoplásicos/farmacologia , Imidazóis/farmacologia , Melanoma/tratamento farmacológico , Fator de Transcrição Associado à Microftalmia/antagonistas & inibidores , Neoplasias Cutâneas/tratamento farmacológico , Tiazóis/farmacologia , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Análise em Microsséries , Fator de Transcrição Associado à Microftalmia/genética , RNA Interferente Pequeno/genética
7.
Mol Cancer Ther ; 14(12): 2831-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26438159

RESUMO

Drugs that target specific gene alterations have proven beneficial in the treatment of cancer. Because cancer cells have multiple resistance mechanisms, it is important to understand the downstream pathways of the target genes and monitor the pharmacodynamic markers associated with therapeutic efficacy. We performed a transcriptome analysis to characterize the response of various cancer cell lines to a selective fibroblast growth factor receptor (FGFR) inhibitor (CH5183284/Debio 1347), a mitogen-activated protein kinase kinase (MEK) inhibitor, or a phosphoinositide 3-kinase (PI3K) inhibitor. FGFR and MEK inhibition produced similar expression patterns, and the extracellular signal-regulated kinase (ERK) gene signature was altered in several FGFR inhibitor-sensitive cell lines. Consistent with these findings, CH5183284/Debio 1347 suppressed phospho-ERK in every tested FGFR inhibitor-sensitive cell line. Because the mitogen-activated protein kinase (MAPK) pathway functions downstream of FGFR, we searched for a pharmacodynamic marker of FGFR inhibitor efficacy in a collection of cell lines with the ERK signature and identified dual-specificity phosphatase 6 (DUSP6) as a candidate marker. Although a MEK inhibitor suppressed the MAPK pathway, most FGFR inhibitor-sensitive cell lines are insensitive to MEK inhibitors and we found potent feedback activation of several pathways via FGFR. We therefore suggest that FGFR inhibitors exert their effect by suppressing ERK signaling without feedback activation. In addition, DUSP6 may be a pharmacodynamic marker of FGFR inhibitor efficacy in FGFR-addicted cancers.


Assuntos
Benzimidazóis/administração & dosagem , Proteínas de Neoplasias/biossíntese , Neoplasias/tratamento farmacológico , Neoplasias/genética , Pirazóis/administração & dosagem , Receptores de Fatores de Crescimento de Fibroblastos/biossíntese , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/biossíntese , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores
8.
PLoS One ; 10(3): e0122006, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25799417

RESUMO

Gene-targeting to create null mutants or designed-point mutants is a powerful tool for the molecular dissection of complex phenotypes involving DNA repair, signal transduction, and metabolism. Because gene-targeting is critically impaired in mutants exhibiting attenuated homologous recombination (HR), it is believed that gene-targeting is mediated via homologous recombination, though the precise mechanism remains unknown. We explored gene-targeting in yeast and avian DT40 cells. In animal cells, gene-targeting is activated by DNA double strand breaks introduced into the genomic region where gene-targeting occurs. This is evidenced by the fact that introducing double strand breaks at targeted genome sequences via artificial endonucleases such as TALEN and CRISPR facilitates gene-targeting. We found that in fission yeast, Schizosaccharomyces pombe, gene-targeting was initiated from double strand breaks on both edges of the homologous arms in the targeting construct. Strikingly, we also found efficient gene-targeting initiated on the edges of homologous arms in avian DT40 cells, a unique animal cell line in which efficient gene-targeting has been demonstrated. It may be that yeast and DT40 cells share some mechanism in which unknown factors detect and recombine broken DNA ends at homologous arms accompanied by crossover. We found efficient targeted integration of gapped plasmids accompanied by crossover in the DT40 cells. To take advantage of this finding, we developed a targeted flip-in system for avian DT40 cells. This flip-in system enables the rapid generation of cells expressing tag-fused proteins and the stable expression of transgenes from OVA loci.


Assuntos
Marcação de Genes/métodos , Recombinação Homóloga , Animais , Linhagem Celular , Galinhas , Quebras de DNA de Cadeia Dupla , Expressão Gênica , Genes Fúngicos , Engenharia Genética/métodos , Genômica/métodos , Plasmídeos/genética , Locos de Características Quantitativas , Proteínas Recombinantes de Fusão , Schizosaccharomyces/genética , Transgenes
9.
Mol Cancer Ther ; 14(3): 704-12, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25589496

RESUMO

Recent cancer genome profiling studies have identified many novel genetic alterations, including rearrangements of genes encoding FGFR family members. However, most fusion genes are not functionally characterized, and their potentials in targeted therapy are unclear. We investigated a recently discovered gene fusion between FGFR3 and BAI1-associated protein 2-like 1 (BAIAP2L1). We identified 4 patients with bladder cancer and 2 patients with lung cancer harboring the FGFR3-BAIAP2L1 fusion through PCR and FISH assay screens. To investigate the oncogenic potential of the fusion gene, we established an FGFR3-BAIAP2L1 transfectant with Rat-2 fibroblast cells (Rat-2_F3-B). The FGFR3-BAIAP2L1 fusion had transforming activity in Rat2 cells, and Rat-2_F3-B cells were highly tumorigenic in mice. Rat-2_F3-B cells showed in vitro and in vivo sensitivity in the selective FGFR inhibitor CH5183284/Debio 1347, indicating that FGFR3 kinase activity is critical for tumorigenesis. Gene signature analysis revealed that FGFR3-BAIAP2L1 activates growth signals, such as the MAPK pathway, and inhibits tumor-suppressive signals, such as the p53, RB1, and CDKN2A pathways. We also established Rat-2_F3-B-ΔBAR cells expressing an FGFR3-BAIAP2L1 variant lacking the Bin-Amphiphysin-Rvs (BAR) dimerization domain of BAIAP2L1, which exhibited decreased tumorigenic activity, FGFR3 phosphorylation, and F3-B-ΔBAR dimerization, compared with Rat-2_F3-B cells. Collectively, these data suggest that constitutive dimerization through the BAR domain promotes constitutive FGFR3 kinase activation and is essential for its potent oncogenic activity.


Assuntos
Proteínas dos Microfilamentos/genética , Proteínas de Fusão Oncogênica/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais/genética , Células 3T3 , Animais , Linhagem Celular , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Fibroblastos/metabolismo , Células HCT116 , Células HEK293 , Humanos , Neoplasias Pulmonares/genética , Camundongos , Proteínas Quinases Ativadas por Mitógeno/genética , Fosforilação/genética , Ratos , Neoplasias da Bexiga Urinária/genética
10.
Mol Cancer Ther ; 14(2): 533-41, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25522765

RESUMO

Erlotinib, a tyrosine kinase inhibitor of the epidermal growth factor receptor (EGFR-TKI), benefits survival of patients with non-small cell lung cancer (NSCLC) who harbor activating EGFR mutations. However, elevated expression of hepatocyte growth factor (HGF), a ligand of the MET receptor tyrosine kinase, causes erlotinib resistance. Because onartuzumab, a monovalent antibody to MET, blocks HGF-induced MET activation, the addition of onartuzumab to erlotinib may improve therapeutic efficacy. We engineered the human NSCLC cell line PC-9 (MET-positive cells harboring an exon 19 deletion of EGFR) to overexpress hHGF and evaluated the effects of an onartuzumab and erlotinib combination in vitro and in vivo in xenograft models. A stable clone of PC-9/hHGF was less sensitive to erlotinib than the parental PC-9, and the addition of onartuzumab to erlotinib suppressed the proliferation of these cells in vitro. In PC-9/hHGF xenograft tumors, onartuzumab or erlotinib alone minimally inhibited tumor growth; however, combining onartuzumab and erlotinib markedly suppressed tumor growth. The total MET protein level was decreased in PC-9/hHGF cells, because MET is constitutively phosphorylated by autocrine HGF, leading to its ubiquitination and degradation. Onartuzumab reduced phospho-MET levels, inhibited MET ubiquitination, and consequently restored MET protein levels. Moreover, in NSCLC clinical specimens harboring activating EGFR mutations, more than 30% of patients expressed high levels of HGF. Our findings raised the possibility that patients with NSCLC with EGFR mutations who express high levels of HGF may benefit from onartuzumab and erlotinib combination therapy, and that HGF can be a novel biomarker for selecting such patients.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB/genética , Fator de Crescimento de Hepatócito/metabolismo , Mutação/genética , Quinazolinas/uso terapêutico , Animais , Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cloridrato de Erlotinib , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Fator de Crescimento de Hepatócito/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Camundongos Nus , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-met , Quinazolinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Mol Cancer Ther ; 13(11): 2547-58, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25169980

RESUMO

The FGF receptors (FGFR) are tyrosine kinases that are constitutively activated in a subset of tumors by genetic alterations such as gene amplifications, point mutations, or chromosomal translocations/rearrangements. Recently, small-molecule inhibitors that can inhibit the FGFR family as well as the VEGF receptor (VEGFR) or platelet-derived growth factor receptor (PDGFR) family displayed clinical benefits in cohorts of patients with FGFR genetic alterations. However, to achieve more potent and prolonged activity in such populations, a selective FGFR inhibitor is still needed. Here, we report the identification of CH5183284/Debio 1347, a selective and orally available FGFR1, FGFR2, and FGFR3 inhibitor that has a unique chemical scaffold. By interacting with unique residues in the ATP-binding site of FGFR1, FGFR2, or FGFR3, CH5183284/Debio 1347 selectively inhibits FGFR1, FGFR2, and FGFR3 but does not inhibit kinase insert domain receptor (KDR) or other kinases. Consistent with its high selectivity for FGFR enzymes, CH5183284/Debio 1347 displayed preferential antitumor activity against cancer cells with various FGFR genetic alterations in a panel of 327 cancer cell lines and in xenograft models. Because of its unique binding mode, CH5183284/Debio 1347 can inhibit FGFR2 harboring one type of the gatekeeper mutation that causes resistance to other FGFR inhibitors and block FGFR2 V564F-driven tumor growth. CH5183284/Debio 1347 is under clinical investigation for the treatment of patients harboring FGFR genetic alterations.


Assuntos
Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Pirazóis/farmacologia , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Receptores de Fatores de Crescimento de Fibroblastos/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Distribuição Aleatória , Ratos , Ratos Wistar , Transdução de Sinais , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Cancer Sci ; 104(10): 1346-52, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23863134

RESUMO

Inhibition of heat shock protein 90 (Hsp90) can lead to degradation of multiple client proteins, which are involved in tumor progression. Epidermal growth factor receptor (EGFR) is one of the most potent oncogenic client proteins of Hsp90. Targeted inhibition of EGFR has shown clinical efficacy in the treatment of patients with non-small-cell lung cancer (NSCLC). However, primary and acquired resistance to the existing EGFR inhibitors is a major clinical problem. In the present study, we investigated the effect of the novel Hsp90 inhibitor CH5164840 on the antitumor activity of erlotinib. The NSCLC cell lines and xenograft models were treated with CH5164840 and erlotinib to examine their mechanisms of action and cell growth inhibition. We found that CH5164840 showed remarkable antitumor activity against NSCLC cell lines and xenograft models. The addition of CH5164840 enhanced the antitumor activity of erlotinib against NCI-H292 EGFR-overexpressing xenograft models. Phosphorylation of Stat3 increased with erlotinib treatment in NCI-H292 cells, which was abrogated by Hsp90 inhibition. Furthermore, in a NCI-H1975 T790M mutation erlotinib-resistant model, CH5164840 enhanced the antitumor activity of erlotinib despite the low efficacy of erlotinib treatment alone. In addition, ERK signaling was effectively suppressed by combination treatment with erlotinib and CH5164840 in a NCI-H1975 erlotinib-resistant model. Taken together, these data indicate that CH5164840 has potent antitumor activity and is highly effective in combination with erlotinib against NSCLC tumors with EGFR overexpression and mutations. Our results support the therapeutic potential of CH5164840 as a Hsp90 inhibitor for combination therapy with EGFR-targeting agents against EGFR-addicted NSCLC.


Assuntos
Benzoquinonas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Lactamas Macrocíclicas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Proteínas de Neoplasias/antagonistas & inibidores , Quinazolinas/farmacologia , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral/efeitos dos fármacos , Sinergismo Farmacológico , Cloridrato de Erlotinib , Humanos , Janus Quinase 1/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Fator de Transcrição STAT3/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Cancer Sci ; 103(2): 342-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22050138

RESUMO

Heat shock protein 90 (Hsp90), a molecular chaperone that plays a significant role in the stability and maturation of client proteins, including oncogenic targets for cell transformation, proliferation, and survival, is an attractive target for cancer therapy. We identified the novel Hsp90 inhibitor, CH5164840, and investigated its induction of oncogenic client protein degradation, antiproliferative activity, and apoptosis against an NCI-N87 gastric cancer cell line and a BT-474 breast cancer cell line. Interestingly, CH5164840 demonstrated tumor selectivity both in vitro and in vivo, binding to tumor Hsp90 (which forms active multiple chaperone complexes) in vitro, and being distributed effectively to tumors in a mouse model, which, taken together, supports the decreased levels of phosphorylated Akt by CH5164840 that we observed in tumor tissues, but not in normal tissues. As well as being well tolerated, the oral administration of CH5164840 exhibited potent antitumor efficacy with regression in NCI-N87 and BT-474 tumor xenograft models. In addition, CH5164840 significantly enhanced antitumor efficacy against gastric and breast cancer models when combined with the human epidermal growth factor receptor 2 (HER2)-targeted agents, trastuzumab and lapatinib. These data demonstrate the potent antitumor efficacy of CH5164840 when administered alone, and its significant combination efficacy when combined with trastuzumab or lapatinib, supporting the clinical development of CH5164840 as an Hsp90 inhibitor for combination therapy with HER2-targeted agents against HER2-overexpressing tumors.


Assuntos
Benzoquinonas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Lactamas Macrocíclicas/farmacologia , Receptor ErbB-2/biossíntese , Neoplasias Gástricas/tratamento farmacológico , Animais , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Benzoquinonas/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Feminino , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Lactamas Macrocíclicas/administração & dosagem , Lapatinib , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Proteína Oncogênica v-akt/biossíntese , Quinazolinas/administração & dosagem , Quinazolinas/farmacologia , Trastuzumab , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Clin Cancer Res ; 17(10): 3272-81, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21558396

RESUMO

PURPOSE: The phosphatidylinositol 3-kinase (PI3K) pathway plays a central role in cell proliferation and survival in human cancer. PIK3CA mutations, which are found in many cancer patients, activate the PI3K pathway, resulting in cancer development and progression. We previously identified CH5132799 as a novel PI3K inhibitor. Thus, this study aimed to clarify the biochemical and antitumor activity of CH5132799 and elucidate the correlation between CH5132799 response and genetic alterations in the PI3K pathway. EXPERIMENTAL DESIGN: Kinase inhibitory activity was profiled in cell-free assays. A large panel of human breast, ovarian, prostate, and endometrial cancer cell lines, as well as xenograft models, were used to evaluate the antitumor activity of CH5132799, followed by analysis for genetic alterations. Effects on Akt phosphorylation induced by mTORC1 inhibition were tested with CH5132799 and compared with mTORC1 and PI3K/mTOR inhibitors. RESULTS: CH5132799 selectively inhibited class I PI3Ks and PI3Kα mutants in in vitro kinase assays. Tumors harboring PIK3CA mutations were significantly sensitive to CH5132799 in vitro and were remarkably regressed by CH5132799 in in vivo mouse xenograft models. In combination with trastuzumab, tumors disappeared in the trastuzumab-insensitive breast cancer model with the PIK3CA mutation. Moreover, CH5132799 did not reverse a negative feedback loop of PI3K/Akt/mTOR signaling and induced regression against tumors regrown after long-term mTORC1 inhibitor treatment. CONCLUSIONS: CH5132799 is a selective class I PI3K inhibitor with potent antitumor activity against tumors harboring the PIK3CA mutations. Prediction of CH5132799 response on the basis of PIK3CA mutations could enable patient stratification in clinical settings.


Assuntos
Neoplasias/tratamento farmacológico , Fosfatidilinositol 3-Quinases/genética , Inibidores de Fosfoinositídeo-3 Quinase , Pirimidinas/uso terapêutico , Sulfonamidas/uso terapêutico , Animais , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Terapia de Alvo Molecular , Mutação/fisiologia , Neoplasias/genética , Oncogenes/genética , Oncogenes/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Especificidade por Substrato , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Int J Antimicrob Agents ; 36(4): 324-31, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20674282

RESUMO

The in vitro susceptibilities of 140 laboratory reference strains of fungi, including type strains, and 165 clinical yeast isolates from Japan towards isavuconazole compared with fluconazole (FLC), itraconazole (ITC), voriconazole and amphotericin B were measured. Broth microdilution methods based on Clinical and Laboratory Standards Institute (CLSI) methods were used for yeasts, and RPMI-MOPS medium semi-solidified with 0.2% low-melting-point agarose based on CLSI guidelines was used for moulds. The range of isavuconazole minimum inhibitory concentrations (MICs) was 0.0004-0.21 mg/L for Candida albicans, 0.0036-0.4 mg/L for Candida glabrata, 0.023-0.058 mg/L for Candida krusei, 0.0026-0.032 mg/L for Cryptococcus neoformans, 0.1-0.39mg/L for Aspergillus fumigatus and 0.2-0.39 mg/L for Aspergillus terreus. Isavuconazole was as active as ITC against the dimorphic true pathogenic fungi, with a range of MICs from <0.0004 mg/L to 0.0063 mg/L for Blastomyces dermatitidis and Histoplasma capsulatum. It was also active against uncommon dematiaceous fungi such as Exophiala spp. and Phialophora spp. as well as against dermatophytic species. Isavuconazole showed very good in vitro antifungal activity with a broad spectrum, including against FLC-resistant Candida spp., Aspergillus spp. and uncommon opportunistic fungal species. This is the first report of the in vitro susceptibility of Japanese clinical yeast isolates to isavuconazole. No cross-resistance was found to isavuconazole amongst FLC-resistant strains.


Assuntos
Antifúngicos/farmacologia , Fungos/efeitos dos fármacos , Micoses/microbiologia , Nitrilas/farmacologia , Piridinas/farmacologia , Triazóis/farmacologia , Leveduras/efeitos dos fármacos , Anfotericina B/farmacologia , Azóis/farmacologia , Humanos , Japão , Testes de Sensibilidade Microbiana/métodos , Testes de Sensibilidade Microbiana/normas , Padrões de Referência , Leveduras/isolamento & purificação
16.
Cancer Genet Cytogenet ; 173(1): 1-9, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17284363

RESUMO

A paclitaxel-resistant subline was generated from the non-small lung cancer cell line NCI-H460 by stepwise selection in paclitaxel from 0.032 to 250 nmol/L. The resulting subline, designated NCI-H460/PTX250, showed 792-fold resistance against paclitaxel compared with the parental cell line NCI-H460. The chemosensitivity analysis revealed the cross-resistance phenotype against various anticancer drugs including docetaxel, vinblastine, and doxorubicin, but not against camptotecin, cisplatin, and 5-fluorouracil. The addition of 5 mumol/L verapamil or reversin 121 reversed the resistance against paclitaxel, vinblastine, and doxorubicin. The gene expression profile, examined using oligonucleotide microarrays, demonstrated that the expression of 332 and 342 genes was significantly increased and decreased, respectively, in NCI-H460/PTX250 compared with NCI-H460. The most highly upregulated gene was MDR1/ABCB1 with a 1,092-fold increase. The overexpression was confirmed at the protein level by Western blot and flow cytometry analyses. The copy number profile, examined using microarray-based comparative genomic hybridization, revealed amplification of the q11.21 approximately q21.12 region on chromosome 7. In particular, the entire q21.12 region displayed 11- to 13-fold higher copy number in NCI-H460/PTX250 than in NCI-H460. Most of the genes within the region were highly expressed, and the increased expression of these genes could be explained by the amplification in the gene copy number. However, the increase in MDR1/ABCB1 expression greatly exceeded the genomic copy number increase of the gene, suggesting the existence of one or more additional factors, such as transcriptional enhancement or mRNA stabilization, associated with the elevated MDR1/ABCB1 expression. In conclusion, both chromosomal region-specific copy number amplification and gene-specific activation are probably involved in the overexpression of MDR1/ABCB1, resulting in acquisition of the drug resistance phenotype in NCI-H460/PTX250.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Amplificação de Genes , Perfilação da Expressão Gênica , Paclitaxel/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Resistência a Múltiplos Medicamentos/genética , Genoma Humano/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Hibridização de Ácido Nucleico/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Arzneimittelforschung ; 56(3): 258-66, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16618019

RESUMO

Although breath test using 13C-labeled urea (CAS 57-13-6, UBT) is becoming popular for the diagnosis of Helicobacter pylori (H. pylori) infection, disposition of exogenously given urea is not fully understood. The purpose of the present study is to elucidate the disposition of exogenous urea and to consider its relation with the UBT safety and biobehavior of endogenous urea. With 14C-labeled urea ([14C]urea), the absorption, distribution, metabolism and excretion including that into breathed air after its administration in trace to large doses in rats were investigated. [14C]Urea was given to fasted and non-fasted rats through intravenous and oral routes. It was found that the disposition of exogenous [14C]urea behaves in a similar way as endogenous urea, and a sufficiently large capacity for disposing urea in rats was suggested from the linear pharmacokinetics within the wide dose range of [14C]urea (2-1000 mg/kg). The safety of urea in UBT was also revealed by consideration of its dose and human urea body pool. It was also suggested that diet stimulates both systemic (as observed after the intravenous dose) and pre-systemic (as with the oral route) decompositions of urea into carbon dioxide and ammonia, but does not affect the renal elimination and distribution pattern in rat tissues. The findings in this study provide us with the quantitative information concerning not only the safety and disposition of urea as a diagnostic agent, but also the biobehavior of endogenous urea in ureotelism.


Assuntos
Dieta , Ureia/farmacocinética , Administração Oral , Animais , Biotransformação , Testes Respiratórios , Jejum , Fezes/química , Injeções Intravenosas , Absorção Intestinal , Masculino , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual , Ureia/administração & dosagem , Ureia/metabolismo
18.
Pharmacogenetics ; 14(11): 769-73, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15564884

RESUMO

OBJECTIVES: Recently, we reported that AC-3933, a novel cognitive enhancer, is polymorphically hydroxylated in beagle dogs and that dogs could be phenotyped as extensive metabolizers (EM) or poor metabolizers (PM). AC-3933 polymorphic hydroxylation is caused by polymorphic expression of CYP1A2 protein in dog liver. METHODS: In order to clarify the mechanism of polymorphic expression of CYP1A2 protein in beagle dogs, we investigated, in this study, the sequence of CYP1A2 cDNA in EM and PM dogs. RESULTS: In PM dogs CYP1A2 gene, we discovered a nonsense mutation (C1117T) that induces a premature termination, and is associated with PM phenotype for AC-3933 hydroxylation. All PM dogs studied were homozygote of the mutant allele (m/m) and seemed to be CYP1A2-null phenotype as they lacked the heme-binding region in CYP1A2. These results indicate that the polymorphic expression of CYP1A2 protein observed in our previous study is caused by a single nucleotide polymorphism on CYP1A2 coding region. Furthermore, we developed a genotyping method for the mutant allele using a mismatch PCR-restriction fragment length polymorphism, and carried out frequency analysis in 149 beagle dogs. CONCLUSION: Our results indicate that more than 10% of the dogs studied were CYP1A2-null. Because CYP1A2-null phenotype in dogs affects the results of pharmacokinetic, toxicological and pharmacological studies of drug candidates, these findings are important in the pharmaceutical and the veterinary fields.


Assuntos
Alelos , Citocromo P-450 CYP1A2/genética , Animais , Sequência de Bases , Citocromo P-450 CYP1A2/metabolismo , Primers do DNA , DNA Complementar , Cães , Genótipo , Fígado/enzimologia , Fenótipo , Polimorfismo de Nucleotídeo Único
19.
Biochem Pharmacol ; 67(7): 1269-78, 2004 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15013842

RESUMO

N-Glucosidation is known as a major metabolic reaction for barbiturates in humans. However, the enzyme(s) involved in this N-glucosidation has not been clarified yet. Thus, to clarify the enzyme(s) involved in the N-glucosidation in human liver microsomes, we investigated the N-glucosyltransferase activity in recombinant UDP-glucuronosyltransferases (UGTs) using AS-3201, an aldose reductase inhibitor, as a substrate. AS-3201 was found to be biotransformed to both N-glucoside and N-glucuronide in human liver microsomes. The N-glucosyltransferase activities were detectable with multiple UGT isoforms (UGT1A1, UGT1A3, UGT1A4, UGT2B4, UGT2B7, and UGT2B15). In contrast, the N-glucuronyltransferase activities for the same substrate were seen with UGT1A (UGT1A1, UGT1A3, UGT1A4, and UGT1A9) but not UGT2B isoforms. We then determined the relative activity factor of each recombinant UGT and estimated the contribution of each UGT isoform to the N-glucosidation in human liver microsomes. The results showed that UGT2B isoforms mainly contribute to AS-3201 N-glucosidation in human liver microsomes. In addition, the activity of AS-3201 N-glucosyltransferase significantly correlated with that of amobarbital N-glucosyltransferase in microsomes from sixteen human livers (r=0.964, P<0.01), indicating that UGT2B isoforms were also involved in the barbiturate N-glucosidation in humans. The findings of this study clearly show that UGT2B specifically utilizes UDP-glucose but not UDP-glucuronic acid as a sugar donor for the conjugation of AS-3201 in human liver microsomes.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Glucuronosiltransferase/metabolismo , Microssomos Hepáticos/metabolismo , Pirazinas/farmacologia , Compostos de Espiro/farmacologia , Uridina Difosfato Glucose/metabolismo , Humanos , Isoenzimas/metabolismo , Microssomos Hepáticos/enzimologia , Proteínas Recombinantes/metabolismo
20.
Drug Metab Dispos ; 32(2): 240-5, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14744947

RESUMO

5-(3-methoxyphenyl)-3-(5-methyl-1,2,4-oxadiazol-3-yl)-2-oxo-1,2-dihydro-1,6-naphthyridine (AC-3933) is a novel cognitive enhancer with central benzodiazepine receptor partial inverse agonistic activity. AC-3933 is predominantly metabolized to hydroxylated metabolite [SX-5745; 3-(5-hydroxymethyl-1,2,4-oxadiazol-3-yl)-5-(3-methoxyphenyl)-2-oxo-1,2-dihydro-1,6-naphthyridine] in dog. Initially, we found that there is considerable interindividual variability in AC-3933 hydroxylation in dogs and that dogs could be phenotyped as extensive metabolizer (EM) and poor metabolizer (PM). Then, to clarify the cause of AC-3933 polymorphic hydroxylation in dogs, in vitro studies were carried out using liver microsomes from EM and PM dogs. Our results show that AC-3933 hydroxylation clearance in PM dogs was much lower than that in EM dogs (0.2 versus 10.8-20.5 microl/min/mg, respectively). In addition, AC-3933 hydroxylation was significantly inhibited by alpha-naphthoflavone, a CYP1A inhibitor, and by anti-CYP1A2 antibodies, indicating that CYP1A2 was responsible for the polymorphic hydroxylation of AC-3933 in dogs. Furthermore, immunoblotting results have shown that although CYP1A2 protein was not detected in PM dogs (<0.86 pmol/mg), CYP1A2 content in EM dogs was prominent (6.1-13.0 pmol/mg). These results indicate that AC-3933 polymorphic hydroxylation arises from the polymorphic expression of CYP1A2 in dogs, which might involve genetic polymorphism of the CYP1A2 gene.


Assuntos
Citocromo P-450 CYP1A2/biossíntese , Agonistas de Receptores de GABA-A , Naftiridinas/farmacocinética , Nootrópicos/farmacocinética , Oxidiazóis/farmacocinética , Polimorfismo Genético , Administração Oral , Animais , Cromatografia Líquida de Alta Pressão , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Cães , Hidroxilação , Immunoblotting , Técnicas In Vitro , Isoenzimas/biossíntese , Isoenzimas/genética , Isoenzimas/metabolismo , Microssomos Hepáticos/metabolismo , Naftiridinas/sangue , Nootrópicos/sangue , Oxidiazóis/sangue , Fenótipo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...