Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Water Sci ; 13(2): 56, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36597441

RESUMO

Drought, rising demand for water, declining water resources, and mismanagement have put society at serious risk. Therefore, it is essential to provide appropriate solutions to increase water productivity (WP). As an element of research, this study presents a hybrid machine learning approach and investigates its potential for estimating date palm crop yield and WP under different levels of subsurface drip irrigation (SDI). The amount of applied water in the SDI system was compared at three levels of 125% (T1), 100% (T2), and 75% (T3) of water requirement. The proposed ACVO-ANFIS approach is composed of an anti-coronavirus optimization algorithm (ACVO) and an adaptive neuro-fuzzy inference system (ANFIS). Since the effect of irrigation factors, climate, and crop characteristics are not equal in estimating the WP and yield, the importance of these factors should be measured in the estimation phase. To fulfill this aim, ACVO-ANFIS employed eight different feature combination models based on irrigation factors, climate, and crop characteristics. The proposed approach was evaluated on a benchmark dataset that contains information about the groves of Behbahan agricultural research station located in southeast Khuzestan, Iran. The results explained that the treatment T3 advanced data palm crop yield by 3.91 and 1.31%, and WP by 35.50 and 20.40 kg/m3, corresponding to T1 and T2 treatments, respectively. The amount of applied water in treatment T3 was 7528.80 m3/ha, which suggests a decrease of 5019.20 and 2509.6 m3/ha of applied water compared to the T1 and T2 treatments. The modeling results of the ACVO-ANFIS approach using a model with factors of crop variety, irrigation (75% water requirement of SDI system), and effective rainfall achieved RMSE = 0.005, δ = 0.603, and AICC = 183.25. The results confirmed that the ACVO-ANFIS outperformed its counterparts in terms of performance criteria.

2.
Plants (Basel) ; 11(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36432859

RESUMO

In understanding the role of root cell wall mechanisms in plant tolerance to salinity, it is important to elucidate the changes in the pectin composition and physical properties of the cell wall. Two salt-sensitive (Helan 3 and Prius ß) and one salt-tolerant (R7) spinach cultivars were used to investigate the pectin polysaccharides, the characteristics of pectin, including the degree of pectin methy-lesterification, the HG:RG-I ratio, neutral side chains (galactan/arabinangalactan), and elasticity and viscosity parameters in the root elongation zone under salinity. Root growth was inhibited by salinity, whereas the root diameter was thickened in all cultivars. Salinity significantly reduced cell wall extensibility in all cultivars, and increased cell wall viscosity in Helan 3 and R7 relative to Prius ß. Pectin was significantly increased under salinity stress. Cell wall viscosity was affected by pectin due to the molar proportion of uronic acid and/or pectin characteristics (HG:RG-I ratio). The molar proportion of uronic acid in pectin was reduced in Helan 3 and R7 compared with Prius ß. The length and degree of pectin methy-lesterification of neutral side chains were significantly decreased in the R7 cultivar, with no significant changes in the other two cultivars. Demethylation of pectin could alter root growth and boost salt tolerance in the R7 cultivar. In this study, it is shown that cell wall pectin played important roles in regulating the root growth of Spinacia oleracea L. under salinity stress.

3.
Physiol Plant ; 173(4): 1850-1861, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34402071

RESUMO

Plant salt tolerance is associated with a high rate of root growth. Although root growth is governed by cell wall and apoplastic pH, the relationship between these factors in the root elongation zone under salinity stress remains unclear. Herein, we assess apoplastic pH, pH- and expansin-dependent cell wall extensibility, and expansin expression in the root elongation zone of salt-sensitive (Yongliang-15) and -tolerant (JS-7) cultivars under salinity stress. A six-day 80 mM NaCl treatment significantly reduced apical root apoplastic pH in both cultivars. Using a pH-dependent cell wall extensibility experiment, we found that, under 0 mM NaCl treatment, the optimal pH for cell wall loosening was 6.0 in the salinity-tolerant cultivar and 4.6 in the salinity-sensitive cultivar. Under 80 mM treatment, a pH of 5.0 mitigated the cell wall stiffness caused by salinity stress in the salinity-tolerant cultivar but promoted cell wall stiffening in the salinity-sensitive cultivar. Salinity stress altered expansin expression and differentially affecting cell wall extensibility under pH 5.0 and 6.0. TaEXPA8 might be relative to cell wall loosening at pH 5.0, whereas TaEXPA5 relative to cell wall loosening at pH 6.0. These results elucidate the relationship between expansins and cell wall extensibility in the root elongation zone, with important implications for enhancing plant growth under salinity stress.


Assuntos
Parede Celular , Triticum , Concentração de Íons de Hidrogênio , Raízes de Plantas , Salinidade , Tolerância ao Sal
4.
Breed Sci ; 71(5): 575-583, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35087321

RESUMO

Improving wheat productivity in drylands largely depends on how plants manage limited water resources. Using fraction of transpirable soil water threshold (FTSWTh) and drought stress response function, we characterized the water conservation traits of two wheat multiple synthetic derivative lines (MSD53 and MSD345) which both contain introgressed segments from Aegilops tauschii but differ in drought resilience. The lines and their backcross parent, 'Norin 61', were subjected to dry-down conditions. MSD53 had a higher FTSWTh for transpiration decrease than 'Norin 61' and MSD345. In terms of drought stress response function, MSD53 had the lowest threshold suction, suggesting a lower drought resilience capacity compared with MSD345. However, MSD53 exhibited an effective-water-use trait whereas MSD345 exhibited a water-saving trait under dry-down conditions. These results are consistent with the reported higher yield of MSD53 in comparison with MSD345 under drought stress in Sudan, and demonstrate that high FTSWTh supports effective water use for improved agricultural productivity in drylands. The differences in water conservation traits between the two MSD lines may be attributed to variation in introgressed segments, which can be further explored for drought resilience breeding.

5.
J Vis Exp ; (135)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29782019

RESUMO

A Ground Penetrating Radar (GPR) system based on a ground-coupled, densely populated antenna array was used to collect data during an infiltration experiment conducted at a test site near the Tottori Sand Dune, Japan. The antenna array used in this study consists of 10 transmitting antennas (Tx) and 11 receiving antennas (Rx). For this experiment, the system was configured to use all possible Tx-Rx pairings, resulting in a Multi-Offset Gather (MOG) consisting of 110 Tx-Rx combinations. The array was left stationary at a position directly above the infiltration area and data were collected every 1.5 seconds using a time-based trigger. Common-Offset Gather (COG) and Common Mid-Point (CMP) data cubes were reconstructed from the MOG data during post-processing. There have been few studies that used time-lapse CMP data to estimate changes in velocity of propagation. In this study, electromagnetic (EM) wave velocity was estimated heuristically at 1-minute intervals from the reconstructed CMP data through curve fitting, using the hyperbola equation. We then proceeded to calculate the depth of the wetting front. The evolution of the wetting front over time obtain through this method is consistent with the observations from a soil moisture sensor which was placed at a depth below 20 cm. The results obtained in this study demonstrate the ability of such array GPR system to monitor a subsurface dynamic process like water infiltration accurately and quantitatively.


Assuntos
Monitoramento Ambiental/métodos , Radar/estatística & dados numéricos
6.
Chemosphere ; 66(11): 2077-86, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17109914

RESUMO

In order to find the optimal running conditions and mechanisms of ammonia removal through a soil trench system that is designed for treating pretreated methane fermentation effluent, a soil column whose structure was similar to the soil trench system was prepared, and irrigated with wastewater below 30 degrees C. At the beginning, ammonia was mainly adsorbed by the soils, and the ammonia adsorption capacity of soils gradually saturated. After the 12th day, nitrification began in the soil column; the ammonia in the soil column decreased sharply, and the nitrite and nitrate peak appeared sequentially as the wastewater application rate decreased from 0.74 to 0.37 l h(-1). When the nitrification in the soil column reached a steady-state, 98% of all the ammonia in the influent was transformed into nitrate. By changing the running conditions such as temperature, aeration, and wastewater application rate, it was found that the ammonia removal efficiency can be improved by aeration and impeded by low temperature. In these three variables, wastewater application rate has much greater affect on the ammonia removal efficiency; a lower wastewater application rate can increase the ammonia removal efficiency substantially because of the longer travel time.


Assuntos
Amônia/química , Solo/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Poluição da Água/prevenção & controle , Adsorção , Fermentação , Cinética , Metano/química , Nitratos/análise , Nitritos/análise , Temperatura , Eliminação de Resíduos Líquidos/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...