Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 47(31): 10590-10594, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-29770403

RESUMO

A new post-functionalization strategy for hybrid polyoxometalate (POM) clusters is presented, whereby the electronic properties and visible-light driven oxidative reactivity of the POM core can be altered by controlled addition of transition metal ions. The structure of three new metal-functionalised derivatives of a phosphonate hybrid-POM are discussed, alongside a comparison of their electrochemical, photo-chemical and photo-oxidative properties.

2.
Inorg Chem ; 56(20): 12169-12177, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-28820581

RESUMO

This study explores a new method to maximize the visible-light-driven photocatalytic performance of organic-inorganic hybrid polyoxometalates (POMs). Experimental and theoretical investigations of a family of phosphonate-substituted POMs show that modification of grafted organic moieties can be used to tune the electronic structure and photoactivity of the metal oxide component. Unlike fully inorganic polyoxotungstates, these organic-inorganic hybrid species are responsive to visible light and function as photocatalysts (λ > 420 nm) in the decomposition of a model environmental pollutant. The degree of photoactivation is shown to be dependent on the nature of the inductive effect exerted by the covalently grafted substituent groups. This study emphasizes the untapped potential that lies in an orbital engineering approach to hybrid-POM design and helps to underpin the next generation of bespoke, robust, and cost-effective molecular metal oxide photoactive materials and catalysts.

3.
Chemistry ; 23(1): 47-50, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27801953

RESUMO

Tungsten-based polyoxometalates (POMs) have been employed as UV-driven photo-catalysts for a range of organic transformations. Their photoactivity is dependent on electronic transitions between frontier orbitals and thus manipulation of orbital energy levels provides a promising means of extending their utility into the visible regime. Herein, an organic-inorganic hybrid polyoxometalate, K6 [P2 W17 O57 (PO5 H5 C7 )2 ]⋅6 C4 H9 NO, was found to exhibit enhanced redox behaviour and photochemistry compared to its purely inorganic counterparts. Hybridization with electron-withdrawing moieties was shown to tune the frontier orbital energy levels and reduce the HOMO-LUMO gap, leading to direct visible-light photoactivation of the hybrid and establishing a simple, cheap and effective approach to the generation of visible-light-activated hybrid nanomaterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...