Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 45(15): 3561-76, 2006 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-16708104

RESUMO

Recently, a data processing and retrieval algorithm (version 2) for ozone, aerosol, and temperature lidar measurements was developed for an ozone lidar system at the National Institute for Environmental Studies (NIES) in Tsukuba (36 degrees N,140 degrees E), Japan. A method for obtaining the aerosol boundary altitude and the aerosol extinction-to-backscatter ratio in the version 2 algorithm enables a more accurate determination of the vertical profiles of aerosols and a more accurate correction of the systematic errors caused by aerosols in the vertical profile of ozone. Improvements in signal processing are incorporated for the correction of systematic errors such as the signal-induced noise and the dead-time effect. The mean vertical ozone profiles of the NIES ozone lidar were compared with those of the Stratospheric Aerosol and Gas Experiment II (SAGE II); they agreed well within a 5% relative difference in the 20-40 km altitude range and within 10% up to 45 km. The long-term variations in the NIES ozone lidar also showed good coincidence with the ozonesonde and SAGE II at 20, 25, 30, and 35 km. The temperatures retrieved from the NIES ozone lidar and those given by the National Center for Environmental Prediction agreed within 7 K in the 35-50 km range.

2.
Tree Physiol ; 23(12): 825-32, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12865248

RESUMO

We developed a fast-response multi-chamber system for measuring soil-surface CO2 efflux (Fc). The chambers (90 x 90 x 50 cm, L x W x H) had lids that opened and closed automatically, and were connected in parallel to a single CO2 analyzer equipped with a 16-channel gas sampler. Between measurements the chamber lids were raised to allow precipitation and leaf litter to reach the enclosed soil surface. When a chamber was closed, it was ventilated with well-buffered ambient air (125 l min-1) that entered by an inlet on one chamber sidewall and exited through a large vent on the opposite sidewall. The pressure difference between the inside and outside of the chamber was less than 0.22 Pa. Two additional mixing fans maintained an air speed of 0.3 +/- 0.1 m s-1 at 20 cm above the soil surface. Air was withdrawn continuously from the inlets and outlets of each chamber, and fed sequentially to an infrared CO2 analyzer. With this system, we measured Fc in a 40-year-old temperate Pinus densiflora Sieb. & Zucc. forest from February 8 to May 30, 2001. Mean Fc increased steadily from 0.9 micro mol m-2 s-1 at the beginning of February to 4.6 micro mol m-2 s-1 by the end of May. There was a statistically significant correlation between Fc and surface soil temperature (r = 0.896; P < 0.0001), and the Q10 value was 2.8. Spatial variation of Fc was higher in the non-growing season than in the growing season. Measurements were not interrupted by either rain or snow.


Assuntos
Botânica/instrumentação , Dióxido de Carbono/análise , Solo/análise , Árvores/fisiologia , Botânica/métodos , Ecossistema , Pinus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...