Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbes Environ ; 38(2)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37045749

RESUMO

Vegetable soybean (Glycine max [L.]) is mainly consumed in Asian countries, but has recently attracted attention worldwide due to its high nutritional value. We aimed to identify the indigenous rhizobia of vegetable soybean in Yao City, Osaka Prefecture, Japan, and to clarify the relationships between the rhizobial community and soil environmental factors. Soil samples were collected from 12 vegetable soybean cultivation fields under two different conditions (six greenhouses and six open fields) in Yao City with different varieties of vegetable soybean. A total of 217 isolates were obtained from the nodules and clustered into nine operational taxonomic units (OTUs) with 97% homology based on the 16S-23S rRNA internal transcribed spacer (ITS) region. A phylogenetic ana-lysis showed that OTUs were closely related to Bradyrhizobium liaoningense, B. ottawaense, B. elkanii, and other Bradyrhizobium species and were dominant in this order. B. liaoningense was widely found in sampled sites and accounted for 50.7% of all isolates, while B. ottawaense was mostly limited to open fields. This rhizobial community differed from Japanese soybean rhizobia, in which B. diazoefficiens, B. japonicum, and B. elkanii were dominant. These results imply the characteristic differences among host plants or regional specialties. A non-metric multidimensional scaling (NMDS) ana-lysis revealed the significant impact of soil pH and the contents of Ca, Mg, Mn, total nitrogen (TN), and total carbon (TC) on the distribution of rhizobia. B. liaoningense was detected in soils with a neutral pH, and high TN and low Mn contents increased its abundance. The present study provides novel insights into Japanese rhizobia and potentially novel resources for sustainable agriculture.


Assuntos
Bradyrhizobium , Rhizobium , Glycine max/genética , Bradyrhizobium/genética , Verduras/genética , Japão , Filogenia , Solo/química , Nódulos Radiculares de Plantas , RNA Ribossômico 16S/genética , Simbiose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...