Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(17): 19560-19565, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38708218

RESUMO

The excellent emulsifying capacity of nanocellulose allows for the preparation of porous nanocellulose/polymer composites through the emulsion templating process. However, the effects of the polymer chemical structure and porosity on the material properties have not been extensively explored. Here, we discuss the effects of these two factors on the thermal and mechanical properties of the composites. Two types of porous nanocellulose/polymer composites were fabricated with styrene-divinylbenzene (poly(St-co-DVB)) or styrene-poly(ethylene glycol) dimethacrylate (poly(St-co-EGDMA)) copolymers as the polymer phases. The porosity of the composite was changed up to ∼50% v/v by varying the aqueous phase volume fraction in the original nanocellulose-stabilized w/o emulsions. As the porosity increased, the thermal conductivity of the composite decreased. The mechanical properties were strongly influenced by the polymer type; the nanocellulose/poly(St-co-DVB) composite showed stiff but brittle behavior, whereas the nanocellulose/poly(St-co-EGDMA) composite showed higher strength and toughness. In both types of composites, the nanocelluloses served as reinforcing agents, contributing to the improvement of the mechanical properties.

2.
Soft Matter ; 20(6): 1245-1252, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38231553

RESUMO

In this study, the atypical swelling gelation of chitin physical hydrogels was investigated. Just by tuning the amount of the N-acetylation reagent, the degree of acetylation varied and mouldable chitin hydrogels with a wide variety of gel concentrations (0.2-6.4 wt%) were obtained. In response to the gel concentration, the mechanical properties ranged from swollen soft gels to shrunken rigid gels (compressive moduli of 4-310 kPa). The thus-prepared chitin hydrogels, which were composed of only chitin and water, exhibited high transparency and integrity. The swelling gelation of chitin physical hydrogels was achieved owing to both the positive charges of the amino groups inducing the osmotic pressure and the toughness of the crystalline nanofibrous network structure of the chitin hydrogels that endured the large volume change. These previously unnoticed advantageous aspects of chitin have pioneered a novel area of swellable physical gels that has been exclusive to chemical gels so far.

3.
Biomacromolecules ; 24(8): 3908-3916, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37499269

RESUMO

Nanocellulose is emerging as a sustainable building block in materials science. Surface modification via polymer grafting has proven to be effective in tuning diverse material properties of nanocellulose, including wettability of films and the reinforcement effect in polymer matrices. Despite its widespread use in various environments, the structure of a single polymer-grafted nanocellulose remains poorly understood. Here, we investigate the morphologies of polymer-grafted CNFs at water-mica and air-mica interfaces by using all-atom molecular dynamics simulation and atomic force microscopy. We show that the morphologies of the polymer-grafted CNFs undergo a marked change in response to the surrounding environment due to variations in the conformation of the surface polymer chains. Our results provide novel insights into the molecular structure of polymer-grafted CNFs and can facilitate the design and development of innovative biomass-based nanomaterials.


Assuntos
Nanoestruturas , Polímeros , Polímeros/química , Silicatos de Alumínio , Estrutura Molecular
4.
Small ; 19(30): e2302276, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37183294

RESUMO

Nanocellulose is attracting attention in the field of materials science as a sustainable building block. Nanocellulose-based materials, such as films, membranes, and foams, are fabricated by drying colloidal dispersions. However, little is known about how the structure of a single nanocellulose changes during the complex drying process. Here, all-atom molecular dynamics simulations and atomic force microscopy is used to investigate the structural dynamics of single nanocellulose during drying. It is found that the twist morphology of the nanocellulose became localized along the fibril axis during the final stage of the drying process. Moreover, it is shown that conformational changes at C6 hydroxymethyl groups and glycoside bond is accompanied by the twist localization, indicating that the increase in the crystallinity occurred in the process. It is expected that the results will provide molecular insights into nanocellulose structures in material processing, which is helpful for the design of materials with advanced functionalities.

5.
Carbohydr Polym ; 312: 120828, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37059556

RESUMO

Tailoring the surface of biodegradable microparticles is important for various applications in the fields of cosmetics, biotechnology, and drug delivery. Chitin nanofibers (ChNFs) are one of the promising materials for surface tailoring owing to its functionality, such as biocompatibility and antibiotic properties. Here, we show biodegradable polymer microparticles densely coated with ChNFs. Cellulose acetate (CA) was used as the core material in this study, and ChNF coating was successfully carried out via a one-pot aqueous process. The average particle size of the ChNF-coated CA microparticles was approximately 6 µm, and the coating procedure had little effect on the size or shape of the original CA microparticles. The ChNF-coated CA microparticles comprised 0.2-0.4 wt% of the thin surface ChNF layers. Owing to the surface cationic ChNFs, the ζ-potential value of the ChNF-coated microparticles was +27.4 mV. The surface ChNF layer efficiently adsorbed anionic dye molecules, and repeatable adsorption/desorption behavior was exhibited owing to the coating stability of the surface ChNFs. The ChNF coating in this study was a facile aqueous process and was applicable to CA-based materials of various sizes and shapes. This versatility will open new possibilities for future biodegradable polymer materials that satisfy the increasing demand for sustainable development.

6.
Biomacromolecules ; 24(4): 1881-1887, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36951190

RESUMO

The material properties of cellulose nanofibers (CNFs) are governed by the surface chemical structure of the fibers. The chemical structure-property relationships for monovalent carboxylated CNFs are well understood. Here, we report the basic sheet properties of divalent phosphorylated CNFs with different phosphorus contents and counterion types. All examined sheet properties, including conditioned and wet tensile properties, electrical resistivities, and fire-retardant properties of the CNF sheets, were greatly enhanced by the counterion exchange from the initial sodium ions to calcium or aluminum ions. The phosphorus content had significant influences only on the conditioned tensile and fire-retardant properties. In comparison to CNF sheets with monovalent carboxy groups, the CNF sheets with divalent phosphate groups were superior in terms of their wet tensile properties and fire-retardant properties. Our research shows that the combination of the divalent phosphate introduction and counterion exchange provides a successful strategy for the practical application of CNF sheets as antistatic materials and flexible substrates for electronic devices.


Assuntos
Retardadores de Chama , Nanofibras , Nanofibras/química , Celulose/química , Eletricidade
7.
Langmuir ; 39(12): 4362-4369, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36917026

RESUMO

Cellulose nanofibers (CNFs) are attracting increasing attention as emulsifiers owing to their high emulsifying capacity, biocompatibility, and biodegradability. The emulsifying capacity has been experimentally shown to depend not only on the type of oil but also on the chemical structure of the CNF surface. However, the theoretical relationship between these two factors and emulsification remains unclear, and therefore, industrial applications are limited. Here, we assess the desorption energy (DE) of CNFs from the oil surface in o/w emulsion for various CNF/oil combinations to understand the mechanism of emulsification. Two types of surface-carboxylated CNFs having different cationic counterions, namely, sodium and tetrabutylammonium ions, were used as emulsifiers. The surface free energies of the CNFs were evaluated using inverse gas chromatography, and the nonpolar Lifshitz-van der Waals γLW, electron-acceptor γ+, and electron-donor γ- components were obtained from the chromatography profiles based on the van Oss-Chaudhury-Good theory. CNF with tetrabutylammonium ions was found to have a higher γ+ component than CNF with sodium ions. Therefore, the emulsion stability improved with oils having high γ- components owing to the increase in the DE value; this was verified through both theoretical calculations using a fibrous model and experimental dynamic interfacial tension measurements. Our approach is useful for predicting the emulsifying capacity of CNFs, and it should contribute toward the design of novel CNF-based emulsions.

8.
Biomacromolecules ; 24(2): 661-666, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36583854

RESUMO

Regenerated and mercerized celluloses are widely used in our daily life and industries. Examples include clothes, medical supplies, and separation membranes. In such applications, the true density is an important derived physical quantity for refining the structural designs of regenerated and mercerized celluloses. Here, we report the true density-crystallinity correlation of regenerated and mercerized celluloses. Seven samples were prepared through either dissolution-regeneration or mercerization, and the true density of each sample was measured by helium gas pycnometry. The crystallinity was evaluated by solid-state 13C nuclear magnetic resonance spectroscopy based on the ratio of the carbon atoms in the crystallite core to those at crystallite surfaces and in the surrounding amorphous matrix. We found that the true density of regenerated and mercerized celluloses is directly proportional to crystallinity, irrespective of the preparation process. Additionally, the molecular packing density at the crystallite surfaces was found to be similar to that in the amorphous matrix.


Assuntos
Celulose , Celulose/química
9.
Nano Lett ; 23(3): 880-886, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36521008

RESUMO

Clarifying the primary structure of nanomaterials is invaluable to understand how the nanostructures lead to macroscopic material functions. Nanocellulose is attracting attention as a sustainable building block in materials science. The surface of nanocellulose is often chemically modified by polymer grafting to tune the material properties, such as the viscoelastic properties in rheology modifiers and the reinforcement effect in composites. However, the structure, such as molecular conformation of the grafted polymer and the twist of the core nanocellulose, is not well understood. Here, we investigated the structure of polymer-grafted nanocellulose in the colloidal dispersion system by combining small-angle X-ray scattering measurement and all-atom molecular dynamics simulation. We demonstrated formation of the polymer brush layer on the nanocellulose surface in solvents, which explains the excellent colloidal stability. We also found that twisting of the nanocellulose in the core is suppressed by the existence of the polymer brush layer.

10.
Nanoscale Horiz ; 7(10): 1186-1191, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36040123

RESUMO

Atomic-scale dent structures on the surfaces of cellulose nanofibers were detected by comparing the experimentally measured and computer-simulated widths of single nanofibers. These dent parts constituted at least 30-40% of the total length of the dispersed nanofibers, and deep dents induced the kinking and fragmentation of nanofibers.


Assuntos
Nanofibras , Celulose/química , Nanofibras/química
11.
Biomacromolecules ; 22(12): 5214-5222, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34855397

RESUMO

Phosphorylated cellulose nanofiber (CNF) is attracting attention as a newly emerged CNF with high functionality. However, many structural aspects of phosphorylated CNF remain unclear. In this study, we investigated the chemical structures and distribution of ionic functional groups on the phosphorylated CNF surfaces via liquid-state nuclear magnetic resonance measurements of colloidal dispersion. In addition to the monophosphate group, polyphosphate groups and cross-linked phosphate groups were introduced in the phosphorylated CNFs. The proportion of polyphosphate groups increased as the phosphorylation time increased, reaching ∼30% of all phosphate groups. Only a small amount of cross-linked phosphate groups existed in the phosphorylated CNF after a prolonged reaction time. Furthermore, phosphorylation of cellulose using urea and phosphoric acid was found to be regioselective at the C2 and C6 positions. There existed no significant difference between the surface degrees of substitution at the C2 and C6 positions of the phosphorylated CNFs.


Assuntos
Celulose , Nanofibras , Celulose/química , Nanofibras/química
12.
Nanomaterials (Basel) ; 11(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34835797

RESUMO

Cellulose nanofibers (CNFs) have excellent properties, such as high strength, high specific surface areas (SSA), and low coefficients of thermal expansion (CTE), making them a promising candidate for bio-based reinforcing fillers of polymers. A challenge in the field of CNF-reinforced composite research is to produce strong and transparent CNF/polymer composites that are sufficiently thick for use as load-bearing structural materials. In this study, we successfully prepared millimeter-thick, transparent CNF/polymer composites using CNF xerogels, with high porosity (~70%) and high SSA (~350 m2 g-1), as a template for monomer impregnation. A methacrylate was used as the monomer and was cured by UV irradiation after impregnation into the CNF xerogels. The CNF xerogels effectively reinforced the methacrylate polymer matrix, resulting in an improvement in the flexural modulus (up to 546%) and a reduction in the CTE value (up to 78%) while maintaining the optical transparency of the matrix polymer. Interestingly, the composites exhibited flame retardancy at high CNF loading. These unique features highlight the applicability of CNF xerogels as a reinforcing template for producing multifunctional and load-bearing polymer composites.

13.
Angew Chem Int Ed Engl ; 60(46): 24630-24636, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34490699

RESUMO

Crystallites form a grain boundary or the inter-crystallite interface. A grain boundary is a structural defect that hinders the efficient directional transfer of mechanical stress or thermal phonons in crystal aggregates. We observed that grain boundaries within an aggregate of crystalline cellulose nanofibers (CNFs) were crystallized by enhancing their inter-crystallite interactions; multiple crystallites were coupled into single fusion crystals, without passing through a melting or dissolving state. Accordingly, the lowered crystallinity of CNFs, which has been considered irreversible, was recovered, and the thermal energy transfer in the aggregate was significantly improved. Other nanofibrous crystallites of chitin also showed a similar fusion phenomenon by enhancing the inter-crystallite interactions. Such crystallite fusion may naturally occur in biological structures with network skeletons of aggregated fibrillar crystallites having mechanical or thermal functions.

14.
ACS Nano ; 15(1): 1436-1444, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33405895

RESUMO

Scalability is a common challenge in the structuring of nanoscale particle dispersions, particularly in the drying of these dispersions for producing functional, porous structures such as aerogels. Aerogel production relies on supercritical drying, which exhibits poor scalability. A solution to this scalability limitation is the use of evaporative drying under ambient pressure. However, the evaporative drying of wet gels comprising nanoscale particles is accompanied by a strong capillary force. Therefore, it is challenging to produce evaporative-dried gels or "xerogels" that possess the specific structural profiles of aerogels such as mesoscale pores, high porosity, and high specific surface area (SSA). Herein, we demonstrate a structure of mesoporous xerogels with high porosity (∼80%) and high SSA (>400 m2 g-1) achieved by exploiting cellulose nanofibers (CNFs) as the building blocks with tunable interparticle interactions. CNFs are sustainable, wood-derived materials with high strength. In this study, the few-nanometer-wide CNFs bearing carboxy groups were structured into a stable network via ionic inter-CNF interaction. The outline of the resulting xerogels was then tailored into a regular, millimeter-thick, board-like structure. Several characterization techniques highlighted the multifunctionality of the CNF xerogels combining outstanding strength (compression E = 170 MPa, σ = 10 MPa; tension E = 290 MPa, σ = 8 MPa), moderate light permeability, thermal insulation (0.06-0.07 W m-1 K-1), and flame self-extinction. As a potential application of the xerogels, daylighting yet insulating, load-bearing wall members can be thus proposed.

15.
ACS Omega ; 5(37): 23755-23761, 2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32984694

RESUMO

The miscibility at the interphase of polymer-grafted nanocellulose/cellulose triacetate (CTA) composite films was tailored using different casting solvents. The polymer-grafted cellulose nanofibrils were prepared by modifying surfaces of 2,2,6,6-tetramethylpiperidine-1-oxyl-oxidized nanocellulose with amine-terminated poly(ethylene glycol) (PEG). The PEG-grafted nanocelluloses were individually dispersed in dichloromethane, 1,4-dioxane, and N,N-dimethylacetamide. The PEG-grafted nanocellulose/CTA composite films were prepared by mixing the nanocellulose dispersion and CTA solution and subsequent casting-drying. The miscibility of PEG and CTA at the interphase of the composite was controlled by controlling the solvent, which was confirmed by dynamic mechanical analysis. All the composite films showed high optical transparency. However, the mechanical properties of the composites differed because of the difference in the PEG/CTA interfacial miscibility. The composite films with better PEG/CTA interfacial miscibility showed higher Young's modulus, strength, and toughness. This interfacial design technique paves the way to exploiting the reinforcing potential of highly transparent and hydrophobic surface-grafted nanocellulose/polymer composite materials.

16.
Carbohydr Polym ; 249: 116843, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32933685

RESUMO

Gum arabic (GA), an arabinogalactan-based gum, is a well-known powerful emulsifier. However, the poor stability of emulsion has often been pointed out. In order to clarify the origin, the structure-property relationship of GA, especially the interfacial property at oil/water interface, needs to be investigated. Here, we tried to correlate the primary structure with interfacial property at oil/water interface. A series of structural analyses by SEC-MALLS, SAXS, etc. showed that the primary structure of GA was a disk-like star shaped nanoparticle. The dynamic interfacial tension measurement showed that GA molecules adsorb onto oil surface in 2 steps: Firstly, the micron-aggregates of GA approach onto the oil surface, and then the aggregates are dissociated into nano-particles so that they cover the oil surface. Therefore, the emulsification and emulsion stability are controlled not by the property of the primary structure of GA but by the higher-order molecular network structure made of GA molecules.

17.
Langmuir ; 36(31): 9235-9240, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32663405

RESUMO

Magnetic nano/microparticles offer potential benefits for environmental applications such as water purification. However, achieving functional and stable surfaces remains a critical challenge for magnetic particle design. Nanocellulose, a naturally occurring nanofiber, is a promising surface material candidate, owing to its ease of functionalization and chemical stability. Here, we developed a magnetically collectable nanocellulose-coated polymer microparticle synthesis method, based on Pickering emulsion templating. The average diameter of the core/shell microparticles was 2.7 µm, and they were well dispersed in water, owing to the coverage with surface-carboxylated nanocelluloses. Most magnetic Fe3O4 nanoparticles with a 30 nm diameter were encapsulated in the microparticles and enriched at the CNF/polymer interfaces. The nanocellulose shell showed high loading of cationic dye molecules. In addition, the nanocellulose-coated microparticles could be recovered even after the dye loading by exposing the aqueous dispersion to a magnetic field.

18.
Front Chem ; 8: 37, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117870

RESUMO

A fibrous 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized wood cellulose/water slurry was disintegrated with a magnetic stirrer or high-pressure homogenizer under various conditions to prepare TEMPO-oxidized cellulose (TOC)/water dispersions with different degrees of fibrillation. The turbidity value of the as-prepared dispersion was used as a measure of the degree of nanofibrillation of the fibrous TOC slurry in water. The fibrillated TOC/water dispersions with low degrees of fibrillation had cellulose nanonetwork (CNNeW) structures consisting of TOC nanofibrils (TOCNs), unfibrillated TOC fibers, and fibril bundles. The original TOC/water slurry and partly fibrillated TOC/water dispersions with low degrees of fibrillation were converted to a sheet and films, respectively, in a short time by membrane filtration, and they had low bulk densities and high porosities. Membrane filtration of an almost completely nanofibrillated TOC/water or TOCN dispersion took a long time, but the as-prepared TOCN films had the highest light transparency, tensile strength, Young's modulus, and work of fracture. The oxygen permeabilities of the films at 23°C and 50% relative humidity were as low as 1-2 ml µm m-2 day-1 kPa-1 among the films prepared from the fibrillated TOC/water dispersions with a wide turbidity range of 0.01-0.45. Therefore, TEMPO-oxidized CNNeW films with the versatile optical, porous, and mechanical properties but similarly low oxygen permeabilities can be prepared by controlling the degree of fibrillation of the TOC/water slurry (Graphical Abstract).

19.
Front Chem ; 8: 68, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117891

RESUMO

We report the anisotropic thermal expansion of a transparent nanopaper structure comprising cellulose nanofibers (CNFs). The coefficient of thermal expansion (CTE) of the nanopaper in the out-of-plane direction was 44.6 ppm/°C in the temperature range of 25-100°C, which is approximately five times larger than its CTE in the in-plane direction in the same temperature range (8.3 ppm/°C). Such a strong anisotropy in thermal expansion is mainly attributable to the anisotropic CTE values of single CNFs in the fiber axis and cross-sectional directions. We observed anisotropic thermal expansion even in a bioplastic composite containing only 2.5% w/w CNFs.

20.
Biomacromolecules ; 21(5): 1886-1891, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-31968165

RESUMO

Chitin nanofiber (ChNF) has received significant research attention owing to its potential for use in a variety of applications, such as medicine and cosmetics. Here, we synthesize a novel ChNF material, ChNF-coated polymer microparticles, using a Pickering emulsion-templated approach. Two varieties of ChNF with different crystal structures, lengths, and surface charges were used to form the microparticle shells. When ChNFs with a shorter length and greater surface charge were used, the microparticles showed good dispersibility in water and narrow size distribution with number- and volume-median diameters of 1.46 and 1.84 µm, respectively. The microparticles were easily collected by filtration and redispersed in water, even after drying. The surface ChNF shells assembled at the microparticle surfaces showed potential as an adsorption site, effectively capturing anionic dye molecules. This technique offers new opportunities for the development of green nanocomposite materials using a facile aqueous process.


Assuntos
Nanocompostos , Nanofibras , Quitina , Emulsões , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...