Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(43): 50447-50456, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37827524

RESUMO

Recently, mechanical strain sensors have been extensively developed to quantify large mechanical deformations for stretchable and wearable applications. In this study, we propose a plasmonic strain sensor based on the mechanical control of optical properties using an assembled film comprising In2O3: Sn nanoparticles (ITO NP film). The resonant reflectance in the infrared range could effectively be tuned by applying strain to the ITO NP film deposited on an elastomeric polydimethylsiloxane (PDMS) sheet. The change in reflectance was caused by the mechanical deformation of the PDMS sheet. The operating mechanism of the proposed plasmonic strain sensor was related to anisotropic fragments induced by cracks formed perpendicular to the direction of the applied strain. These anisotropic fragments were functionalized as optical modulators to change the reflectance depending on the applied strain. The sensing performance of the proposed plasmonic strain sensor was evaluated by using a PDMS sheet with a circular hole that produced nonuniform stress distributions. Finally, to evaluate the flexible and wearable performance of the proposed sensor, the optical detection of human motion was performed by detecting joint-related movements. The optical detection of human motion could be achieved because a change in motion (e.g., bending and stretching of the index finger) was reversibly associated with reflectance changes. Therefore, this study provides new insights into plasmon-based strain sensing for various applications in flexible instruments and human motion detection.

2.
ACS Appl Mater Interfaces ; 14(43): 49313-49325, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36261131

RESUMO

Three-dimensional nanoparticle (NP) assemblies show interesting optical responses that differ from naturally occurring materials, such as metals, oxides, and semiconductors. In this study, we investigate the optical response of thin films comprising Sn:In2O3 NPs (ITO NP films) based on the correlation between complex permittivity and infrared (IR) reflectance for solar-thermal shielding applications. IR ellipsometry measurements are conducted to clarify the presence of Lorentz resonances in plasmonic metamaterials. The Lorentz resonances are correlated to the electric field strength at interparticle gaps by varying the Sn dopant concentration, as confirmed using finite-difference time-domain (FDTD) simulations. High solar-thermal shielding performance was obtained owing to selective near-IR reflection based on strong Lorentz resonances as the ITO NP films were electrically polarizable but magnetically inactive. Thermal shielding efficiency was demonstrated via a comparison of the air temperature change in a simulated box used as a model house. Additionally, we demonstrate the significance of NP packing density on the enhancement of the near-IR reflectance. The role of interparticle spacing for high near-IR reflectance was revealed by comparing effective medium approximation analyses and FDTD simulations. This relationship was also demonstrated by the reduction of solar-thermal shielding performance when using aggregated ITO NPs. Our work confirmed that the control of complex permittivity in plasmonic metamaterials must be considered in the structural design of transparent and reflective materials for solar-thermal shielding applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...