Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5625, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454043

RESUMO

We performed molecular dynamics simulations of carbon nanotube (CNT) to elucidate the growth process in the floating catalyst chemical vapor deposition method (FCCVD). FCCVD has two features: a nanometer-sized cementite (Fe 3 C) particle whose melting point is depressed because of the larger surface-to-volume ratio and tensile strain between the growing CNT and the catalyst. The simulations, including these effects, demonstrated that the number of 6-membered rings of the (6,4) chiral CNT constantly increased at a speed of 1 mm / s at 1273 K , whereas those of the armchair and zigzag CNTs were stopped in the simulations and only reached half of the numbers for chiral CNT. Both the temperature and CNT chirality significantly affected CNT growth under tensile strain.

2.
Adv Sci (Weinh) ; 10(31): e2304082, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37688335

RESUMO

Proton exchange membranes with high proton conductivity and low crossover of fuel molecules are required to realize advanced fuel-cell technology. The selective transportation of protons, which occurs by blocking the transportation of fuel molecules across a proton exchange membrane, is crucial to suppress crossover while maintaining a high proton conductivity. In this study, a simple yet powerful method is proposed for optimizing the crossover-conductivity relationship by pasting sulfanilic-functionalized holey graphenes onto a Nafion membrane. The results show that the sulfanilic-functionalized holey graphenes supported by the membrane suppresses the crossover by 89% in methanol and 80% in formate compared with that in the self-assembled Nafion membrane; an ≈60% reduction is observed in the proton conductivity. This method exhibits the potential for application in advanced fuel cells that use methanol and formic acid as chemical fuels to achieve high energy efficiency.

4.
Adv Mater ; 35(3): e2207466, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36271728

RESUMO

To realize a sustainable hydrogen economy, corrosion-resistant non-noble-metal catalysts are needed to replace noble-metal-based catalysts. The combination of passivation elements and catalytically active elements is crucial for simultaneously achieving high corrosion resistance and high catalytic activity. Herein, the self-selection/reconstruction characteristics of multi-element (nonary) alloys that can automatically redistribute suitable elements and rearrange surface structures under the target reaction conditions during the oxygen evolution reaction are investigated. The following synergetic effect (i.e., cocktail effect), among the elements Ti, Zr, Nb, and Mo, significantly contributes to passivation, whereas Cr, Co, Ni, Mn, and Fe enhance the catalytic activity. According to the practical water electrolysis experiments, the self-selected/reconstructed multi-element alloy demonstrates high performance under a similar condition with proton exchange membrane (PEM)-type water electrolysis without obvious degradation during stability tests. This verifies the resistance of the alloy to corrosion when used as an electrode under a practical PEM electrolysis condition.

5.
J Phys Chem B ; 126(26): 4899-4913, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35732066

RESUMO

Shear-thickening fluids that absorb the impact energy of high-velocity projectiles are of great interest for aerospace and body-armor applications. In such a frame, we investigate transient states of neat and aqueous polyelectrolytes (PE) having low molecular weights and containing poly([2-(methacryloyloxy)ethyl]trimethylammonium) as polycations and poly(acrylamide-co-acrylic acid) as polyanions. We compare results with those of bulk water. We employ nonequilibrium molecular dynamics to simulate oscillatory shear, mainly in the linear viscoelastic regime. We find that neat PE exhibits properties of a viscoelastic solid, whereas water and the aqueous mixture of PE conform to viscoelastic liquids with Maxwellian behavior at low angular frequencies. Terminal relaxation times are ∼0.499 and ∼1.385 ps for water and the aqueous mixture of PE, respectively. At high angular frequencies, storage moduli show anomalous behaviors that correspond to transitions between shear thinning and shear thickening in complex shear viscosities. The change in potential energy with the increase of the angular frequency is mainly driven by intramolecular interactions for neat PE, whereas short-range Coulomb interactions are the major contributions for water and the aqueous mixture of PE. Upon observation of the molecular configurations, only the local polyionic structure in the aqueous mixture of PE shows improvement when increasing the angular frequency, whereas the rest remains barely affected. Thus, the water structure in the aqueous mixture of PE allows the storage of energy elastically through the hydrogen-bond network at large angular frequencies, whereas the mechanical contribution of polyions weakens and fully vanishes at the beginning of shear thinning, explaining the superimposed data with data of bulk water. Our method and findings set the path for future molecular simulations in the nonlinear viscoelastic regime with more complex underlying molecular mechanisms.


Assuntos
Água , Conformação Molecular , Peso Molecular , Polieletrólitos , Viscosidade
6.
Sci Rep ; 12(1): 1285, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35079064

RESUMO

We report the one-step fabrication of aligned and high-quality carbon nanotubes (CNTs) using floating-catalyst chemical vapor deposition (FCCVD) with controlled fluidic properties assisted by a gas rectifier. The gas rectifier consists of one-dimensional straight channels for regulating the Reynolds number of the reaction gas. Our computational fluid dynamics simulation reveals that the narrow channels of the gas rectifier provide steady and accelerated laminar flow of the reaction gas. In addition, strong shear stress is induced near the side wall of the channels, resulting in the spontaneous formation of macroscopic CNT bundles aligned along the direction of the gas flow. After a wet-process using chlorosulfonic acid, the inter-tube voids inherently observed in as-grown CNT bundles are reduced from 16 to 0.3%. The resulting CNT fiber exhibits a tensile strength of 2.1 ± 0.1 N tex-1 with a Young's modulus of 39 ± 4 N tex-1 and an elongation of 6.3 ± 0.6%. FCCVD coupled with the strong shear stress of the reaction gas is an important pre-processing route for the fabrication of high-performance CNT fibers.

7.
Sci Rep ; 11(1): 24204, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34921219

RESUMO

We studied the shear-thickening behavior of systems containing rigid spherical bodies immersed in smaller particles using non-equilibrium molecular dynamics simulations. We generated shear-thickening states through particle mass modulation of the systems. From the microstructures, i.e., two-dimensional pair distribution functions, we found anisotropic structures resulting from shear thickening, that are explained by the difference between the velocities of rigid bodies and fluid particles. The increasing viscosity in our system originated from collisions between fluid particles and rigid bodies. The lubrication forces defined in macroscale physics are then briefly discussed.

8.
J Phys Chem B ; 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34132550

RESUMO

Materials enabling impact-energy absorption of high-velocity projectiles are of great interest for applications like aerospace. In such a frame, shear thickening fluids were found very useful. Here, we investigated nanorheological properties of neat and aqueous polyelectrolytes of low molecular weights containing poly([2-(methacryloyloxy) ethyl] trimethyl ammonium) as polycations and poly(acrylamide-co-acrylic acid) as polyanions. Results were compared with pure water. We employed nonequilibrium molecular dynamics with the SLLOD algorithm to compute the viscosity at various shear rates. Systems containing polyelectrolytes exhibit shear thickening. The analysis of molecular configurations revealed a strong disruption of the ionic structure and more clusters with smaller sizes on increasing the shear rate. Potential energies showed that shear thickening originates from an increase in intramolecular and van der Waals interactions resulting from the increasing difficultly of polyelectrolyte-based systems to relax at high shear rates. Our method and findings underscore the importance of accounting for the molecular scale in the design of materials absorbing the impact energy efficiently.

9.
Nat Commun ; 12(1): 203, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420063

RESUMO

Graphene-covering is a promising approach for achieving an acid-stable, non-noble-metal-catalysed hydrogen evolution reaction (HER). Optimization of the number of graphene-covering layers and the density of defects generated by chemical doping is crucial for achieving a balance between corrosion resistance and catalytic activity. Here, we investigate the influence of charge transfer and proton penetration through the graphene layers on the HER mechanisms of the non-noble metals Ni and Cu in an acidic electrolyte. We find that increasing the number of graphene-covering layers significantly alters the HER performances of Ni and Cu. The proton penetration explored through electrochemical experiments and simulations reveals that the HER activity of the graphene-covered catalysts is governed by the degree of proton penetration, as determined by the number of graphene-covering layers.

10.
Materials (Basel) ; 13(10)2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32422953

RESUMO

Environmental safety has become increasingly important with respect to hydrogen use in society. Monitoring techniques for explosive gaseous hydrogen are essential to ensure safety in sustainable hydrogen utilization. Here, we reveal molecular hydrogen detection mechanisms with monolithic three-dimensional nanoporous reduced graphene oxide under gaseous hydrogen flow and at room temperature. Nanoporous reduced graphene oxide significantly increased molecular hydrogen physisorption without the need to employ catalytic metals or heating. This can be explained by the significantly increased surface area in comparison to two-dimensional graphene sheets and conventional reduced graphene oxide flakes. Using this large surface area, molecular hydrogen adsorption behaviors were accurately observed. In particular, we found that the electrical resistance firstly decreased and then gradually increased with higher gaseous hydrogen concentrations. The resistance decrease was due to charge transfer from the molecular hydrogen to the reduced graphene oxide at adsorbed molecular hydrogen concentrations lower than 2.8 ppm; conversely, the resistance increase was a result of Coulomb scattering effects at adsorbed molecular hydrogen concentrations exceeding 5.0 ppm, as supported by density functional theory. These findings not only provide the detailed adsorption mechanisms of molecular hydrogen, but also advance the development of catalyst-free non-heated physisorption-type molecular detection devices.

11.
Adv Sci (Weinh) ; 6(10): 1900119, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31131204

RESUMO

Carbon-based metal-free catalysts for the hydrogen evolution reaction (HER) are essential for the development of a sustainable hydrogen society. Identification of the active sites in heterogeneous catalysis is key for the rational design of low-cost and efficient catalysts. Here, by fabricating holey graphene with chemically dopants, the atomic-level mechanism for accelerating HER by chemical dopants is unveiled, through elemental mapping with atomistic characterizations, scanning electrochemical cell microscopy (SECCM), and density functional theory (DFT) calculations. It is found that the synergetic effects of two important factors-edge structure of graphene and nitrogen/phosphorous codoping-enhance HER activity. SECCM evidences that graphene edges with chemical dopants are electrochemically very active. Indeed, DFT calculation suggests that the pyridinic nitrogen atom could be the catalytically active sites. The HER activity is enhanced due to phosphorus dopants, because phosphorus dopants promote the charge accumulations on the catalytically active nitrogen atoms. These findings pave a path for engineering the edge structure of graphene in graphene-based catalysts.

12.
Nat Commun ; 10(1): 275, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30655526

RESUMO

The real capacity of graphene and the lithium-storage process in graphite are two currently perplexing problems in the field of lithium ion batteries. Here we demonstrate a three-dimensional bilayer graphene foam with few defects and a predominant Bernal stacking configuration, and systematically investigate its lithium-storage capacity, process, kinetics, and resistances. We clarify that lithium atoms can be stored only in the graphene interlayer and propose the first ever planar lithium-intercalation model for graphenic carbons. Corroborated by theoretical calculations, various physiochemical characterizations of the staged lithium bilayer graphene products further reveal the regular lithium-intercalation phenomena and thus fully illustrate this elementary lithium storage pattern of two-dimension. These findings not only make the commercial graphite the first electrode with clear lithium-storage process, but also guide the development of graphene materials in lithium ion batteries.

13.
Sci Rep ; 7(1): 12371, 2017 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-28959046

RESUMO

Direct growth of graphene integrated into electronic devices is highly desirable but difficult due to the nominal ~1000 °C chemical vapor deposition (CVD) temperature, which can seriously deteriorate the substrates. Here we report a great reduction of graphene CVD temperature, down to 50 °C on sapphire and 100 °C on polycarbonate, by using dilute methane as the source and molten gallium (Ga) as catalysts. The very low temperature graphene synthesis is made possible by carbon attachment to the island edges of pre-existing graphene nuclei islands, and causes no damages to the substrates. A key benefit of using molten Ga catalyst is the enhanced methane absorption in Ga at lower temperatures; this leads to a surprisingly low apparent reaction barrier of ~0.16 eV below 300 °C. The faster growth kinetics due to a low reaction barrier and a demonstrated low-temperature graphene nuclei transfer protocol can facilitate practical direct graphene synthesis on many kinds of substrates down to 50-100 °C. Our results represent a significant progress in reducing graphene synthesis temperature and understanding its mechanism.

14.
Anal Chem ; 88(10): 5225-33, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27104743

RESUMO

The effectivity of cryo-scanning transmission electron microscopy-electron energy loss spectroscopy was demonstrated for nanoscale analysis of the cross-section of the Cu/polyimide interface. The nanoscale Cu/Cu2O/CuO layer structure at the interface was clearly observed for the first time. In addition, a Cu atom was identified, embedded in the polyimide matrix, and the average valence of diffusing Cu atoms or nanoclusters was determined using (cryo-)scanning transmission electron microscopy-electron energy loss spectroscopy. On the basis of these results, we have proposed a mechanism for the diffusion of Cu atoms in polyimide. To the best of our knowledge, this is the first report of the observation of a metal atom embedded in an insulating amorphous polymer.

15.
Foods ; 5(2)2016 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-28231139

RESUMO

The masking of bitterness is considered important because many pharmaceutical compounds have a bitter taste. The bitterness-masking effect of powdered roasted soybeans (PRS) was investigated using a bitter taste sensor. PRS was revealed to significantly suppress the bitterness of quinine hydrochloride and denatonium benzoate. Furthermore, the bitterness-masking mechanism of PRS extracts was evaluated using dynamic light scattering. These results showed that the extracted suspension consisted of particles that were several hundreds of nanometers in size. Analysis of the PRS extracts by nuclear magnetic resonance spectroscopy indicated that denatonium benzoate was entrapped in the PRS extracts. Thus, PRS may be useful as a bitterness-masking agent in orally administered pharmaceuticals.

16.
ACS Appl Mater Interfaces ; 4(10): 5542-6, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23054205

RESUMO

A method for fabricating single-crystalline nanogaps on Si substrates was developed. Polycrystalline Pt nanowires on Si substrates were broken down by current flow under various gaseous environments. The crystal structure of the nanogap electrode was evaluated using scanning electron microscopy and transmission electron microscopy. Nanogap electrodes sandwiched between Pt-large-crystal-grains were obtained by the breakdown of the wire in an O(2) or H(2) atmosphere. These nanogap electrodes show intense spots in the electron diffraction pattern. The diffraction pattern corresponds to Pt (111), indicating that single-crystal grains are grown by the electrical wire breakdown process in an O(2) or H(2) atmosphere. The Pt wires that have (111)-texture and coherent boundaries can be considered ideal as interconnectors for single molecular electronics. The simple method for fabrication of a single-crystalline nanogap is one of the first steps toward standard nanogap electrodes for single molecular instruments and opens the door to future research on physical phenomena in nanospaces.


Assuntos
Gases/química , Nanofios/química , Cristalização , Eletrodos , Eletrônica , Hidrogênio/química , Oxigênio/química , Platina/química
17.
Chemistry ; 16(40): 12221-8, 2010 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-20842672

RESUMO

For the development of biofunctional carbon nanotubes for biosensors, drug carriers, and nanobiocatalysts, their aggregation and biofouling in aqueous solutions are crucial problems because this behavior leads to a reduction of their excellent optical and electrical properties and nanoscale size effects. This paper presents a new method for enhancing the dispersibility of protein-carbon nanotube conjugates and for exfoliating the protein from the carbon nanotube sidewalls through controlling the concentration of guanidine hydrochloride (Gdn·HCl) in the solution. In medium concentrations (2-3 M) of Gdn·HCl, the dispersibility of protein-carbon nanotube conjugates was found to be substantially increased without denaturation or aggregation of the proteins. At higher concentrations (>6 M) of Gdn·HCl, pristine carbon nanotubes were precipitated instantly as a result of dissociation of the protein. These phenomena indicate that Gdn·HCl functions not only as a dispersion adjuvant for biofunctional protein-carbon nanotube conjugates, but also as a cleaning agent for the purification of biofouled carbon nanotubes. The dissociation concentrations of Gdn·HCl were higher than the midpoint of protein denaturation, suggesting that protein adsorption on carbon nanotubes is more stable than protein folding toward Gdn·HCl.


Assuntos
Portadores de Fármacos/química , Guanidina/química , Nanotubos de Carbono/química , Técnicas Biossensoriais/métodos , Concentração de Íons de Hidrogênio , Desnaturação Proteica , Dobramento de Proteína
18.
Phys Rev Lett ; 94(1): 013203, 2005 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-15698079

RESUMO

We have experimentally demonstrated a material-independent mirror for atomic waves that uses the Fresnel diffraction at an array of parallel ridges. He* (2 (3)S(1)) and Ne* (1s(3)) atomic waves were reflected coherently on a silicon plate with a microfabricated grating structure, consisting of narrow wall-like ridges. We measured the reflectivity at grazing incidence as a function of the incident velocity and angle. Our data show that the reflectivity on this type of mirror depends only on the distance between the ridges, the wavelength, and the incident angle, but is insensitive to the material of the grating structure. The reflectivity is observed to increase by 2 orders of magnitude, compared to that of a flat polished silicon surface, where the reflection is caused by the attractive surface potential. For He* atoms, the measured reflectivity exceeds 10% for normal incident velocities below about 25 cm/s.

19.
Phys Rev Lett ; 92(21): 215702, 2004 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-15245293

RESUMO

The tubulization process of amorphous carbon nanopillars was observed in situ by transmis-sion electron microscopy. Amorphous carbon nanopillars were transformed into graphitic tubules by annealing at 650-900 degrees C in the presence of iron nanoparticles. A molten catalyst nanoparticle penetrated an amorphous carbon nanopillar, dissolving it, and leaving a graphite track behind. An iron nanoparticle moved with its shape changing like an earthworm. We concluded that the tubulization mechanism is a solid-(quasiliquid)-solid mechanism where the carbon phase transformation is a kind of liquid phase graphitization of amorphous carbon catalyzed by liquefied metal-carbon alloy nanoparticles.

20.
Phys Rev Lett ; 88(12): 123201, 2002 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-11909457

RESUMO

A cold metastable neon atomic beam was manipulated with a reflective amplitude hologram that was encoded on a silicon surface. A black-and-white pattern of atoms was reconstructed on a microchannel plate detector. The hologram used the enhanced quantum reflection developed by authors and was made of a two-dimensional array of rectangular low and high reflective cells. The surface of the high reflective cell was composed of regularly spaced roof-shaped ridges, while the low reflective cell was simply a flat surface. The hologram was the first demonstration of reflective atom-optical elements that used universal interaction between a neutral atom and solid surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...