Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1258452, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901831

RESUMO

Motile bacteria take a competitive advantage in colonization of plant surfaces to establish beneficial associations that eventually support plant health. Plant exudates serve not only as primary growth substrates for bacteria but also as bacterial chemotaxis attractants. A number of plant-derived compounds and corresponding chemotaxis sensors have been documented, however, the sensors for methanol, one of the major volatile compounds released by plants, have not been identified. Methylobacterium species are ubiquitous plant surface-symbiotic, methylotrophic bacteria. A plant-growth promoting bacterium, M. aquaticum strain 22A exhibits chemotaxis toward methanol (methylotaxis). Its genome encodes 52 methyl-accepting chemotaxis proteins (MCPs), among which we identified three MCPs (methylotaxis proteins, MtpA, MtpB, and MtpC) responsible for methylotaxis. The triple gene mutant of the MCPs exhibited no methylotaxis, slower gathering to plant tissues, and less efficient colonization on plants than the wild type, suggesting that the methylotaxis mediates initiation of plant-Methylobacterium symbiosis and engages in proliferation on plants. To examine how these MCPs are operating methylotaxis, we generated multiple gene knockouts of the MCPs, and Ca2+-dependent MxaFI and lanthanide (Ln3+)-dependent XoxF methanol dehydrogenases (MDHs), whose expression is regulated by the presence of Ln3+. MtpA was found to be a cytosolic sensor that conducts formaldehyde taxis (formtaxis), as well as methylotaxis when MDHs generate formaldehyde. MtpB contained a dCache domain and exhibited differential cellular localization in response to La3+. MtpB expression was induced by La3+, and its activity required XoxF1. MtpC exhibited typical cell pole localization, required MxaFI activity, and was regulated under MxbDM that is also required for MxaF expression. Strain 22A methylotaxis is realized by three independent MCPs, two of which monitor methanol oxidation by Ln3+-regulated MDHs, and one of which monitors the common methanol oxidation product, formaldehyde. We propose that methanol metabolism-linked chemotaxis is the key factor for the efficient colonization of Methylobacterium on plants.

2.
Front Microbiol ; 13: 921636, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814700

RESUMO

Methylobacterium and Methylorubrum species oxidize methanol via pyrroloquinoline quinone-methanol dehydrogenases (MDHs). MDHs can be classified into two major groups, Ca2+-dependent MDH (MxaF) and lanthanide (Ln3+)-dependent MDH (XoxF), whose expression is regulated by the availability of Ln3+. A set of a siderophore, TonB-dependent receptor, and an ABC transporter that resembles the machinery for iron uptake is involved in the solubilization and transport of Ln3+. The transport of Ln3+ into the cytosol enhances XoxF expression. A unique protein named lanmodulin from Methylorubrum extorquens strain AM1 was identified as a specific Ln3+-binding protein, and its biological function was implicated to be an Ln3+ shuttle in the periplasm. In contrast, it remains unclear how Ln3+ levels in the cells are maintained, because Ln3+ is potentially deleterious to cellular systems due to its strong affinity to phosphate ions. In this study, we investigated the function of a lanmodulin homolog in Methylobacterium aquaticum strain 22A. The expression of a gene encoding lanmodulin (lanM) was induced in response to the presence of La3+. A recombinant LanM underwent conformational change upon La3+ binding. Phenotypic analyses on lanM deletion mutant and overexpressing strains showed that LanM is not necessary for the wild-type and XoxF-dependent mutant's methylotrophic growth. We found that lanM expression was regulated by MxcQE (a two-component regulator for MxaF) and TonB_Ln (a TonB-dependent receptor for Ln3+). The expression level of mxcQE was altered to be negatively dependent on Ln3+ concentration in ∆lanM, whereas it was constant in the wild type. Furthermore, when exposed to La3+, ∆lanM showed an aggregating phenotype, cell membrane impairment, La deposition in the periplasm evidenced by electron microscopy, differential expression of proteins involved in membrane integrity and phosphate starvation, and possibly lower La content in the membrane vesicle (MV) fractions. Taken together, we concluded that lanmodulin is involved in the complex regulation mechanism of MDHs and homeostasis of cellular Ln levels by facilitating transport and MV-mediated excretion.

3.
Front Microbiol ; 13: 921635, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875576

RESUMO

Methylobacterium and Methylorubrum species are facultative methylotrophic bacteria that are abundant in the plant phyllosphere. They have two methanol dehydrogenases, MxaF and XoxF, which are dependent on either calcium or lanthanides (Lns), respectively. Lns exist as insoluble minerals in nature, and their solubilization and uptake require a siderophore-like substance (lanthanophore). Methylobacterium species have also been identified as plant growth-promoting bacteria although the actual mechanism has not been well-investigated. This study aimed to reveal the roles of siderophore in Methylobacterium aquaticum strain 22A in Ln uptake, bacterial physiology, and plant growth promotion. The strain 22A genome contains an eight-gene cluster encoding the staphyloferrin B-like (sbn) siderophore. We demonstrate that the sbn siderophore gene cluster is necessary for growth under low iron conditions and was complemented by supplementation with citrate or spent medium of the wild type or other strains of the genera. The siderophore exhibited adaptive features, including tolerance to oxidative and nitrosative stress, biofilm formation, and heavy metal sequestration. The contribution of the siderophore to plant growth was shown by the repressive growth of duckweed treated with siderophore mutant under iron-limited conditions; however, the siderophore was dispensable for strain 22A to colonize the phyllosphere. Importantly, the siderophore mutant could not grow on methanol, but the siderophore could solubilize insoluble Ln oxide, suggesting its critical role in methylotrophy. We also identified TonB-dependent receptors (TBDRs) for the siderophore-iron complex, iron citrate, and Ln, among 12 TBDRs in strain 22A. Analysis of the siderophore synthesis gene clusters and TBDR genes in Methylobacterium genomes revealed the existence of diverse types of siderophores and TBDRs. Methylorubrum species have an exclusive TBDR for Ln uptake that has been identified as LutH. Collectively, the results of this study provide insight into the importance of the sbn siderophore in Ln chelation, bacterial physiology, and the diversity of siderophore and TBDRs in Methylobacterium species.

4.
Front Microbiol ; 12: 740610, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34737731

RESUMO

The pink-pigmented facultative methylotrophs (PPFMs), a major bacterial group found in the plant phyllosphere, comprise two genera: Methylobacterium and Methylorubrum. They have been separated into three major clades: A, B (Methylorubrum), and C. Within these genera, however, some species lack either pigmentation or methylotrophy, which raises the question of what actually defines the PPFMs. The present study employed a comprehensive comparative genomics approach to reveal the phylogenetic relationship among the PPFMs and to explain the genotypic differences that confer their different phenotypes. We newly sequenced the genomes of 29 relevant-type strains to complete a dataset for almost all validly published species in the genera. Through comparative analysis, we revealed that methylotrophy, nitrate utilization, and anoxygenic photosynthesis are hallmarks differentiating the PPFMs from the other Methylobacteriaceae. The Methylobacterium species in clade A, including the type species Methylobacterium organophilum, were phylogenetically classified into six subclades, each possessing relatively high genomic homology and shared phenotypic characteristics. One of these subclades is phylogenetically close to Methylorubrum species; this finding led us to reunite the two genera into a single genus Methylobacterium. Clade C, meanwhile, is composed of phylogenetically distinct species that share relatively higher percent G+C content and larger genome sizes, including larger numbers of secondary metabolite clusters. Most species of clade C and some of clade A have the glutathione-dependent pathway for formaldehyde oxidation in addition to the H4MPT pathway. Some species cannot utilize methanol due to their lack of MxaF-type methanol dehydrogenase (MDH), but most harbor an XoxF-type MDH that enables growth on methanol in the presence of lanthanum. The genomes of PPFMs encode between two and seven (average 3.7) genes for pyrroloquinoline quinone-dependent alcohol dehydrogenases, and their phylogeny is distinctly correlated with their genomic phylogeny. All PPFMs were capable of synthesizing auxin and did not induce any immune response in rice cells. Other phenotypes including sugar utilization, antibiotic resistance, and antifungal activity correlated with their phylogenetic relationship. This study provides the first inclusive genotypic insight into the phylogeny and phenotypes of PPFMs.

5.
Microorganisms ; 8(6)2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486139

RESUMO

Lanthanides (Ln) are an essential cofactor for XoxF-type methanol dehydrogenases (MDHs) in Gram-negative methylotrophs. The Ln3+ dependency of XoxF has expanded knowledge and raised new questions in methylotrophy, including the differences in characteristics of XoxF-type MDHs, their regulation, and the methylotrophic metabolism including formaldehyde oxidation. In this study, we genetically identified one set of Ln3+- and Ca2+-dependent MDHs (XoxF1 and MxaFI), that are involved in methylotrophy, and an ExaF-type Ln3+-dependent ethanol dehydrogenase, among six MDH-like genes in Methylobacterium aquaticum strain 22A. We also identified the causative mutations in MxbD, a sensor kinase necessary for mxaF expression and xoxF1 repression, for suppressive phenotypes in xoxF1 mutants defective in methanol growth even in the absence of Ln3+. Furthermore, we examined the phenotypes of a series of formaldehyde oxidation-pathway mutants (fae1, fae2, mch in the tetrahydromethanopterin (H4MPT) pathway and hgd in the glutathione-dependent formaldehyde dehydrogenase (GSH) pathway). We found that MxaF produces formaldehyde to a toxic level in the absence of the formaldehyde oxidation pathways and that either XoxF1 or ExaF can oxidize formaldehyde to alleviate formaldehyde toxicity in vivo. Furthermore, the GSH pathway has a supportive role for the net formaldehyde oxidation in addition to the H4MPT pathway that has primary importance. Studies on methylotrophy in Methylobacterium species have a long history, and this study provides further insights into genetic and physiological diversity and the differences in methylotrophy within the plant-colonizing methylotrophs.

6.
Biosci Biotechnol Biochem ; 83(11): 2163-2171, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31272289

RESUMO

Motile bacteria often exhibit chemotaxis toward favorable compounds. However, the diversity of bacteria that are attracted to a given substance is largely unknown. This study aimed to reveal the diversity of bacteria with natural chemotaxis towards methanol. We tried to enrich environmental chemotactic bacteria using a glass capillary that is half-filled with methanol solidified with agarose as a trap ("chemotaxis fishing"). The pilot experiment using methanol-chemotactic Methylobacterium aquaticum strain 22A enriched the cells by 46-fold. The method was then applied to bacterial suspensions from paddy water and plants. Depending on the isolation sources and the methods of motility induction, methylotrophic bacteria were enriched 1.2-330-fold. The fished isolates belong to 32 species in 18 genera, mainly containing Acinetobacter, Methylobacterium and Pseudomonas species. Our chemotaxis fishing unveiled a part of diversity of the bacteria with natural chemotaxis towards methanol.


Assuntos
Bactérias/citologia , Bactérias/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Metanol/farmacologia , Técnicas Microbiológicas/métodos , Plantas/microbiologia
7.
J Biosci Bioeng ; 126(6): 715-722, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29910189

RESUMO

Ergothioneine (EGT) is a sulfur-containing, anti-oxidative amino acid derived from histidine. EGT is synthesized in bacteria and fungi but not in animals and plants, and is now recognized as important for human health. Its cost-effective fermentative production has not been elucidated due to the lack of information for productive microorganisms. In this study, we doubled the gene copy for EGT synthesis and deleted the histidine ammonia-lyase gene in a potent EGT-producing methylotrophic bacterium Methylobacterium aquaticum strain 22A, and optimized its culture conditions, resulting in increased EGT production of 7.0 mg EGT/g dry cell weight and 100 µg EGT/5 mL/7 days. In addition, through screening we found EGT-producing eukaryotic strains of Aureobasidium pullulans and Rhodotorula mucilaginosa, which can produce 1.0 and 3.2 mg EGT/g dry cell weight, 70 and 120 µg EGT/5 mL/7 days, respectively. This study proposes practical uses of potent EGT-producing recombinant Methylobacterium species and non-recombinant yeast and fungal strains.


Assuntos
Ergotioneína/biossíntese , Fungos/metabolismo , Methylobacterium/metabolismo , Leveduras/metabolismo , Animais , Antioxidantes/metabolismo , Fungos/genética , Histidina/metabolismo , Humanos , Engenharia Metabólica , Metanol/metabolismo , Methylobacterium/genética , Organismos Geneticamente Modificados , Oxirredução , Rhodotorula/genética , Rhodotorula/crescimento & desenvolvimento , Rhodotorula/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Leveduras/genética
8.
mSphere ; 3(1)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29404411

RESUMO

Methylobacterium species are representative of methylotrophic bacteria. Their genomes usually encode two types of methanol dehydrogenases (MDHs): MxaF and XoxF. The former is a Ca2+-dependent enzyme, and the latter was recently determined to be a lanthanide-dependent enzyme that is necessary for the expression of mxaF. This finding revealed the unexpected and important roles of lanthanides in bacterial methylotrophy. In this study, we performed transcriptome sequencing (RNA-seq) analysis using M. aquaticum strain 22A grown in the presence of different lanthanides. Expression of mxaF and xoxF1 genes showed a clear inverse correlation in response to La3+. We observed downregulation of formaldehyde oxidation pathways, high formaldehyde dehydrogenase activity, and low accumulation of formaldehyde in the reaction with cells grown in the presence of La3+; this might be due to the direct oxidation of methanol to formate by XoxF1. Lanthanides induced the transcription of AT-rich genes, the function of most of which was unknown, and genes possibly related to cellular survival, as well as other MDH homologues. These results revealed not only the metabolic response toward altered primary methanol oxidation, but also the possible targets to be investigated further in order to better understand methylotrophy in the presence of lanthanides. IMPORTANCE Lanthanides have been considered unimportant for biological processes. In methylotrophic bacteria, however, a methanol dehydrogenase (MDH) encoded by xoxF was recently found to be lanthanide dependent, while the classic-type mxaFI is calcium dependent. XoxF-type MDHs are more widespread in diverse bacterial genera, suggesting their importance for methylotrophy. Methylobacterium species, representative methylotrophic and predominating alphaproteobacteria in the phyllosphere, contain both types and regulate their expression depending on the availability of lanthanides. RNA-seq analysis showed that the regulation takes place not only for MDH genes but also the subsequent formaldehyde oxidation pathways and respiratory chain, which might be due to the direct oxidation of methanol to formate by XoxF. In addition, a considerable number of genes of unknown function, including AT-rich genes, were found to be upregulated in the presence of lanthanides. This study provides first insights into the specific reaction of methylotrophic bacteria to the presence of lanthanides, emphasizing the biological relevance of this trace metal.

9.
Int J Syst Evol Microbiol ; 67(3): 576-582, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27902265

RESUMO

A novel facultatively methanol-utilizing bacterial strain, SM30T, was isolated from rice rhizosphere. Strain SM30T was Gram-stain-negative, aerobic, motile, short rods, and grew optimally at pH 7 and at 28 °C. It could tolerate 0 to 2 % (w/v) NaCl. Based on 16S rRNA gene sequence comparisons, strain SM30T was most closely related to Pleomorphomonas oryzae DSM 16300T, with a low similarity of 94.17 %. One of the lanthanide metals, lanthanum, could enhance its growth slightly on methanol. Phylogenetic trees, based on the mxaF, xoxF and cpn60 genes of SM30T showed its distinct phylogenetic position with respect to species with validly published names. Polymerase chain reaction (PCR) amplification of the nifH and growth on nitrogen-free medium indicated that strain SM30T is a diazotroph. The major cellular fatty acids were summed feature 8 (containing 18 : 1ω7c and 18 : 1ω6c) and cyclo 19 : 0ω8c. The major quinone was ubiquinone 10. The DNA G+C content was 74.6 mol%. Based on the genotypic and phenotypic characteristics, strain SM30T represents a novel genus and species, for which the name Oharaeibacter diazotrophicus gen. nov., sp. nov. is proposed with the type strain SM30T (=NBRC 111955T=DSM 102969T).


Assuntos
Methylocystaceae/classificação , Oryza/microbiologia , Filogenia , Rizosfera , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Japão , Methylocystaceae/genética , Methylocystaceae/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
10.
J Biosci Bioeng ; 123(2): 190-196, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27720675

RESUMO

Methylobacterium species are methylotrophic bacteria that widely inhabit plant surfaces. In addition to studies on methylotrophs as model organisms, research has also been conducted on their mechanism of plant growth promotion as well as the species-species specificity of plant-microbe interaction. We employed whole-cell matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (WC-MS) analysis, which enables the rapid and accurate identification of bacteria at the species level, to identify Methylobacterium isolates collected from the rice seeds of different cultivars harvested in Japan, Thailand, and Kenya. Rice seeds obtained from diverse geographical locations showed different communities of Methylobacterium species. We found that M. fujisawaense, M. aquaticum, M. platani, and M. radiotolerans are the most frequently isolated species, but none were isolated as common species from 18 seed samples due to the highly biased communities in some samples. These findings will contribute to the development of formulations containing selected species that promote rice growth, though it may be necessary to customize the formulations depending on the cultivars and farm conditions.


Assuntos
Methylobacterium/isolamento & purificação , Oryza/química , Oryza/microbiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Técnicas Bacteriológicas , Biodiversidade , Japão , Methylobacterium/classificação , Methylobacterium/genética , Methylobacterium/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento , Sementes/química , Sementes/crescimento & desenvolvimento , Sementes/microbiologia , Especificidade da Espécie
11.
Harmful Algae ; 60: 150-156, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-28073558

RESUMO

Algal bloom is typically caused by aberrant propagation of a single species, resulting in its predomination in the local population. While environmental factors including temperature and eutrophication are linked to bloom, the precise mechanism of its formation process is still obscure. Here, we isolated a bacterial strain that promotes growth of Heterosigma akashiwo, a Raphidophyceae that causes harmful algal blooms. Based on 16S rRNA gene sequence, the strain was identified as Altererythrobacter ishigakiensis, a member of the class Alphaproteobacteria. When added to culture, this strain facilitated growth of H. akashiwo and increased its cell culture yield significantly. Importantly, this strain did not affect the growth of other raphidophytes, Chattonella ovate and C. antiqua, indicating that it promotes growth of H. akashiwo in a species-specific manner. We also found that, in co-culture, H. akashiwo suppressed the growth of C. ovate. When A. ishigakiensis was added to the mixed culture, H. akashiwo growth was facilitated while C. ovate propagation was markedly suppressed, indicating that the presence of the bacterium enhances the dominance of H. akashiwo over C. ovate. This is the first example of selective growth promotion of H. akashiwo by a marine bacterium, and may exemplify importance of symbiotic bacterium on algal bloom forming process in general.


Assuntos
Organismos Aquáticos/fisiologia , Fenômenos Fisiológicos Bacterianos , Estramenópilas/crescimento & desenvolvimento , Estramenópilas/microbiologia , Bactérias/metabolismo , Proliferação Nociva de Algas , Interações Microbianas , RNA Ribossômico 16S/genética , Água do Mar/microbiologia
12.
Front Microbiol ; 6: 1185, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26579093

RESUMO

Metabolomic analysis revealed that Methylobacterium cells accumulate a large amount of ergothioneine (EGT), which is a sulfur-containing, non-proteinogenic, antioxidative amino acid derived from histidine. EGT biosynthesis and its role in methylotrophy and physiology for plant surface-symbiotic Methylobacterium species were investigated in this study. Almost all Methylobacterium type strains can synthesize EGT. We selected one of the most productive strains (M. aquaticum strain 22A isolated from a moss), and investigated the feasibility of fermentative EGT production through optimization of the culture condition. Methanol as a carbon source served as the best substrate for production. The productivity reached up to 1000 µg/100 ml culture (1200 µg/g wet weight cells, 6.3 mg/g dry weight) in 38 days. Next, we identified the genes (egtBD) responsible for EGT synthesis, and generated a deletion mutant defective in EGT production. Compared to the wild type, the mutant showed better growth on methanol and on the plant surface as well as severe susceptibility to heat treatment and irradiation of ultraviolet (UV) and sunlight. These results suggested that EGT is not involved in methylotrophy, but is involved in their phyllospheric lifestyle fitness of the genus in natural conditions.

13.
PLoS One ; 10(6): e0129509, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26053875

RESUMO

Methylobacterium species frequently inhabit plant surfaces and are able to utilize the methanol emitted from plants as carbon and energy sources. As some of the Methylobacterium species are known to promote plant growth, significant attention has been paid to the mechanism of growth promotion and the specificity of plant-microbe interactions. By screening our Methylobacterium isolate collection for the high growth promotion effect in vitro, we selected some candidates for field and pot growth tests for rice and barley, respectively. We found that inoculation resulted in better ripening of rice seeds, and increased the size of barley grains but not the total yield. In addition, using whole-cell matrix-assister laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF/MS) analysis, we identified and classified Methylobacterium isolates from Methylobacterium-inoculated rice plants. The inoculated species could not be recovered from the rice plants, and in some cases, the Methylobacterium community structure was affected by the inoculation, but not with predomination of the inoculated species. The isolates from non-inoculated barley of various cultivars grown in the same field fell into just two species. These results suggest that there is a strong selection pressure at the species level of Methylobacterium residing on a given plant species, and that selection of appropriate species that can persist on the plant is important to achieve growth promotion.


Assuntos
Hordeum/crescimento & desenvolvimento , Hordeum/microbiologia , Methylobacterium/fisiologia , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Funções Verossimilhança , Methylobacterium/genética , Methylobacterium/isolamento & purificação , Dados de Sequência Molecular , Filogenia , Folhas de Planta/microbiologia , RNA Ribossômico 16S/genética , Sementes/microbiologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...