Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
J Pathol ; 263(4-5): 429-441, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38837231

RESUMO

The Ppy gene encodes pancreatic polypeptide (PP) secreted by PP- or γ-cells, which are a subtype of endocrine cells localised mainly in the islet periphery. For a detailed characterisation of PP cells, we aimed to establish PP cell lines. To this end, we generated a mouse model harbouring the SV40 large T antigen (TAg) in the Rosa26 locus, which is expressed upon Ppy-promoter-mediated Cre-loxP recombination. Whereas Insulin1-CreERT-mediated TAg expression in beta cells resulted in insulinoma, surprisingly, Ppy-Cre-mediated TAg expression resulted in the malignant transformation of Ppy-lineage cells. These mice showed distorted islet structural integrity at 5 days of age compared with normal islets. CK19+ duct-like lesions contiguous with the islets were observed at 2 weeks of age, and mice developed aggressive pancreatic ductal adenocarcinoma (PDAC) at 4 weeks of age, suggesting that PDAC can originate from the islet/endocrine pancreas. This was unexpected as PDAC is believed to originate from the exocrine pancreas. RNA-sequencing analysis of Ppy-lineage islet cells from 7-day-old TAg+ mice showed a downregulation and an upregulation of endocrine and exocrine genes, respectively, in addition to the upregulation of genes and pathways associated with PDAC. These results suggest that the expression of an oncogene in Ppy-lineage cells induces a switch from endocrine cell fate to PDAC. Our findings demonstrate that Ppy-lineage cells may be an origin of PDAC and may provide novel insights into the pathogenesis of pancreatic cancer, as well as possible therapeutic strategies. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Carcinoma Ductal Pancreático , Linhagem da Célula , Neoplasias Pancreáticas , Animais , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Camundongos , Camundongos Transgênicos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Transformação Celular Neoplásica/metabolismo , Ilhotas Pancreáticas/patologia , Ilhotas Pancreáticas/metabolismo , Antígenos Transformantes de Poliomavirus/genética , Antígenos Transformantes de Poliomavirus/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos
2.
Sci Rep ; 14(1): 8052, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609428

RESUMO

Ehlers-Danlos syndrome spondylodysplastic type 3 (EDSSPD3, OMIM 612350) is an inherited recessive connective tissue disorder that is caused by loss of function of SLC39A13/ZIP13, a zinc transporter belonging to the Slc39a/ZIP family. We previously reported that patients with EDSSPD3 harboring a homozygous loss of function mutation (c.221G > A, p.G64D) in ZIP13 exon 2 (ZIP13G64D) suffer from impaired development of bone and connective tissues, and muscular hypotonia. However, whether ZIP13 participates in the early differentiation of these cell types remains unclear. In the present study, we investigated the role of ZIP13 in myogenic differentiation using a murine myoblast cell line (C2C12) as well as patient-derived induced pluripotent stem cells (iPSCs). We found that ZIP13 gene expression was upregulated by myogenic stimulation in C2C12 cells, and its knockdown disrupted myotubular differentiation. Myocytes differentiated from iPSCs derived from patients with EDSSPD3 (EDSSPD3-iPSCs) also exhibited incomplete myogenic differentiation. Such phenotypic abnormalities of EDSSPD3-iPSC-derived myocytes were corrected by genomic editing of the pathogenic ZIP13G64D mutation. Collectively, our findings suggest the possible involvement of ZIP13 in myogenic differentiation, and that EDSSPD3-iPSCs established herein may be a promising tool to study the molecular basis underlying the clinical features caused by loss of ZIP13 function.


Assuntos
Proteínas de Transporte , Síndrome de Ehlers-Danlos , Osteocondrodisplasias , Animais , Humanos , Camundongos , Diferenciação Celular/genética
3.
Diabetologia ; 67(1): 156-169, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37870650

RESUMO

AIMS/HYPOTHESIS: Glucagon-expressing pancreatic alpha cells have attracted much attention for their plasticity to transdifferentiate into insulin-producing beta cells; however, it remains unclear precisely when, and from where, alpha cells emerge and what regulates alpha cell fate. We therefore explored the spatial and transcriptional heterogeneity of alpha cell differentiation using a novel time-resolved reporter system. METHODS: We established the mouse model, 'Gcg-Timer', in which newly generated alpha cells can be distinguished from more-differentiated cells by their fluorescence. Fluorescence imaging and transcriptome analysis were performed with Gcg-Timer mice during the embryonic and postnatal stages. RESULTS: Fluorescence imaging and flow cytometry demonstrated that green fluorescence-dominant cells were present in Gcg-Timer mice at the embryonic and neonatal stages but not after 1 week of age, suggesting that alpha cell neogenesis occurs during embryogenesis and early neonatal stages under physiological conditions. Transcriptome analysis of Gcg-Timer embryos revealed that the mRNAs related to angiogenesis were enriched in newly generated alpha cells. Histological analysis revealed that some alpha cells arise close to the pancreatic ducts, whereas the others arise away from the ducts and adjacent to the blood vessels. Notably, when the glucagon signal was suppressed by genetic ablation or by chemicals, such as neutralising glucagon antibody, green-dominant cells emerged again in adult mice. CONCLUSIONS/INTERPRETATION: Novel time-resolved analysis with Gcg-Timer reporter mice uncovered spatiotemporal features of alpha cell neogenesis that will enhance our understanding of cellular identity and plasticity within the islets. DATA AVAILABILITY: Raw and processed RNA sequencing data for this study has been deposited in the Gene Expression Omnibus under accession number GSE229090.


Assuntos
Células Secretoras de Glucagon , Células Secretoras de Insulina , Ilhotas Pancreáticas , Camundongos , Animais , Glucagon/metabolismo , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Insulina/metabolismo , Diferenciação Celular/genética , Perfilação da Expressão Gênica , Ilhotas Pancreáticas/metabolismo
4.
Endocrinology ; 164(8)2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37314160

RESUMO

Imeglimin and metformin act in metabolic organs, including ß-cells, via different mechanisms. In the present study, we investigated the impacts of imeglimin, metformin, or their combination (Imeg + Met) on ß-cells, the liver, and adipose tissues in db/db mice. Imeglimin, metformin, or Imeg + Met treatment had no significant effects on glucose tolerance, insulin sensitivity, respiratory exchange ratio, or locomotor activity in db/db mice. The responsiveness of insulin secretion to glucose was recovered by Imeg + Met treatment. Furthermore, Imeg + Met treatment increased ß-cell mass by enhancing ß-cell proliferation and ameliorating ß-cell apoptosis in db/db mice. Hepatic steatosis, the morphology of adipocytes, adiposity assessed by computed tomography, and the expression of genes related to glucose or lipid metabolism and inflammation in the liver and fat tissues showed no notable differences in db/db mice. Global gene expression analysis of isolated islets indicated that the genes related to regulation of cell population proliferation and negative regulation of cell death were enriched by Imeg + Met treatment in db/db islets. In vitro culture experiments confirmed the protective effects of Imeg + Met against ß-cell apoptosis. The expression of Snai1, Tnfrsf18, Pdcd1, Mmp9, Ccr7, Egr3, and Cxcl12, some of which have been linked to apoptosis, in db/db islets was attenuated by Imeg + Met. Treatment of a ß-cell line with Imeg + Met prevented apoptosis induced by hydrogen peroxide or palmitate. Thus, the combination of imeglimin and metformin is beneficial for the maintenance of ß-cell mass in db/db mice, probably through direct action on ß-cells, suggesting a potential strategy for protecting ß-cells in the treatment of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Metformina , Camundongos , Animais , Masculino , Metformina/farmacologia , Metformina/uso terapêutico , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Glicemia/metabolismo , Células Secretoras de Insulina/metabolismo , Glucose/metabolismo , Camundongos Endogâmicos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico
5.
Cell Chem Biol ; 30(6): 658-671.e4, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36944338

RESUMO

Autophagy plays an essential role in preserving cellular homeostasis in pancreatic beta cells. However, the extent of autophagic flux in pancreatic islets induced in various physiological settings remains unclear. In this study, we generate transgenic mice expressing pHluorin-LC3-mCherry reporter for monitoring systemic autophagic flux by measuring the pHluorin/mCherry ratio, validating them in the starvation and insulin-deficient model. Our findings reveal that autophagic flux in pancreatic islets enhances after starvation, and suppression of the flux after short-term refeeding needs more prolonged re-starvation in islets than in the other insulin-targeted organs. Furthermore, heterogeneity of autophagic flux in pancreatic beta cells manifests under insulin resistance, and intracellular calcium influx by glucose stimulation increases more in high- than low-autophagic flux beta cells, with differential gene expression, including lipoprotein lipase. Our pHluorin-LC3-mCherry mice enable us to reveal biological insight into heterogeneity in autophagic flux in pancreatic beta cells.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Camundongos , Animais , Células Secretoras de Insulina/metabolismo , Camundongos Transgênicos , Ilhotas Pancreáticas/metabolismo , Insulina/metabolismo , Autofagia/fisiologia
6.
Sci Rep ; 13(1): 3484, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922503

RESUMO

Metal homeostasis is tightly regulated in cells and organisms, and its disturbance is frequently observed in some diseases such as neurodegenerative diseases and metabolic disorders. Previous studies suggest that zinc and iron are necessary for the normal functions of pancreatic ß cells. However, the distribution of elements in normal conditions and the pathophysiological significance of dysregulated elements in the islet in diabetic conditions have remained unclear. In this study, to investigate the dynamics of elements in the pancreatic islets of a diabetic mouse model expressing human islet amyloid polypeptide (hIAPP): hIAPP transgenic (hIAPP-Tg) mice, we performed imaging analysis of elements using synchrotron scanning X-ray fluorescence microscopy and quantitative analysis of elements using inductively coupled plasma mass spectrometry. We found that in the islets, zinc significantly decreased in the early stage of diabetes, while iron gradually decreased concurrently with the increase in blood glucose levels of hIAPP-Tg mice. Notably, when zinc and/or iron were decreased in the islets of hIAPP-Tg mice, dysregulation of glucose-stimulated mitochondrial respiration was observed. Our findings may contribute to clarifying the roles of zinc and iron in islet functions under pathophysiological diabetic conditions.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Camundongos , Animais , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Zinco/metabolismo , Ferro/metabolismo , Camundongos Transgênicos , Amiloide/metabolismo , Ilhotas Pancreáticas/metabolismo , Células Secretoras de Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo
7.
J Biochem ; 173(5): 393-411, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-36779417

RESUMO

HNF4α regulates various genes to maintain liver function. There have been reports linking HNF4α expression to the development of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis. In this study, liver-specific Hnf4a-deficient mice (Hnf4aΔHep mice) developed hepatosteatosis and liver fibrosis, and they were found to have difficulty utilizing glucose. In Hnf4aΔHep mice, the expression of fatty acid oxidation-related genes, which are PPARα target genes, was increased in contrast to the decreased expression of PPARα, suggesting that Hnf4aΔHep mice take up more lipids in the liver instead of glucose. Furthermore, Hnf4aΔHep/Ppara-/- mice, which are simultaneously deficient in HNF4α and PPARα, showed improved hepatosteatosis and fibrosis. Increased C18:1 and C18:1/C18:0 ratio was observed in the livers of Hnf4aΔHep mice, and the transactivation of PPARα target gene was induced by C18:1. When the C18:1/C18:0 ratio was close to that of Hnf4aΔHep mouse liver, a significant increase in transactivation was observed. In addition, the expression of Pgc1a, a coactivator of PPARs, was increased, suggesting that elevated C18:1 and Pgc1a expression could contribute to PPARα activation in Hnf4aΔHep mice. These insights may contribute to the development of new diagnostic and therapeutic approaches for NAFLD by focusing on the HNF4α and PPARα signaling cascade.


Assuntos
Fator 4 Nuclear de Hepatócito , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Cirrose Hepática/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , PPAR alfa/genética , PPAR alfa/metabolismo
8.
J Biol Chem ; 299(2): 102878, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36623733

RESUMO

Deletion of O-GlcNAc transferase (Ogt) in pancreatic epithelial progenitor cells results in pancreatic hypoplasia at birth, partly due to increased apoptosis during embryonic development. Constitutive loss of Ogt in ß-cells results in increased ER stress and apoptosis, and in the Ogt-deficient pancreas, transcriptomic data previously revealed both tumor suppressor protein p53 and pancreatic duodenal homeobox 1 (Pdx1), key cell survival proteins in the developing pancreas, as upstream regulators of differentially expressed genes. However, the specific roles of these genes in pancreatic hypoplasia are unclear. In this study, we explored the independent roles of p53, ER stress protein CHOP, and Pdx1 in pancreas development and their use in the functional rescue of pancreatic hypoplasia in the context of Ogt loss. Using in vivo genetic manipulation and morphometric analysis, we show that Ogt plays a key regulatory role in pancreas development. Heterozygous, but not homozygous, loss of pancreatic p53 afforded a partial rescue of ß-cell, α-cell, and exocrine cell masses, while whole body loss of CHOP afforded a partial rescue in pancreas weight and a full rescue in exocrine cell mass. However, neither was sufficient to fully mitigate pancreatic hypoplasia at birth in the Ogt-deficient pancreas. Furthermore, overexpression of Pdx1 in the pancreatic epithelium resulted in partial rescues in pancreas weight and ß-cell mass in the Ogt loss background. These findings highlight the requirement of Ogt in pancreas development by targeting multiple proteins such as transcription factor Pdx1 and p53 in the developing pancreas.


Assuntos
Expressão Gênica , Células Secretoras de Glucagon , Pancreatopatias , Proteína Supressora de Tumor p53 , Animais , Camundongos , Células Secretoras de Glucagon/metabolismo , Pâncreas Exócrino/metabolismo , Proteína Supressora de Tumor p53/genética , Expressão Gênica/genética , Pancreatopatias/genética , Pancreatopatias/fisiopatologia
9.
Sci Rep ; 12(1): 21419, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36496541

RESUMO

As diabetes results from the absolute or relative deficiency of insulin secretion from pancreatic ß cells, possible methods to efficiently generate surrogate ß cells have attracted a lot of efforts. To date, insulin-producing cells have been generated from various differentiated cell types in the pancreas, such as acinar cells and α cells, by inducing defined transcription factors, such as PDX1 and MAFA, yet it is still challenging as to how surrogate ß cells can be efficiently generated for establishing future regenerative therapies for diabetes. In this study, we demonstrated that the exogenous expression of PDX1 activated STAT3 in α cells in vitro, and STAT3-null PDX1-expressing α cells in vivo resulted in efficient induction of α-to-ß reprogramming, accompanied by the emergence of α-cell-derived insulin-producing cells with silenced glucagon expression. Whereas ß-cell ablation by alloxan administration significantly increased the number of α-cell-derived insulin-producing cells by PDX1, STAT3 suppression resulted in no further increase in ß-cell neogenesis after ß-cell ablation. Thus, STAT3 modulation and ß-cell ablation nonadditively enhance α-to-ß reprogramming induced by PDX1, which may lead to the establishment of cell therapies for curing diabetes.


Assuntos
Diabetes Mellitus , Células Secretoras de Glucagon , Células Secretoras de Insulina , Humanos , Reprogramação Celular/genética , Diabetes Mellitus/metabolismo , Células Secretoras de Glucagon/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
10.
PLoS One ; 17(8): e0269958, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35976945

RESUMO

Pancreatic polypeptide (PP), secreted from γ cells of the islets of Langerhans, is a 36 amino-acid peptide encoded by the Ppy gene. Although previous studies have reported that PP causes a decrease in appetite, the molecular mechanism that regulates PP secretion has not been fully elucidated. Lack of understanding of the regulatory mechanism of PP secretion may be partially owing to the lack of assay systems that can specifically detect PP. We recently developed the mouse monoclonal antibody 23-2D3 that specifically recognizes PP. In the present study, we developed a sandwich enzyme-linked immunosorbent assay for the measurement of mouse PP, and directly monitored intracellular Ca2+ concentrations in Ppy-expressing cells from a newly developed reporter mouse. Using these systems, we identified agonists, such as carbachol and glucose-dependent insulinotropic polypeptide (GIP), which stimulate PP secretion. We further demonstrated that, unlike the case of GIP-induced insulin secretion from ß cells, there is a unique mechanism by which PP secretion is triggered by an increase in intracellular Ca2+ concentrations via voltage-dependent calcium channels even in low-glucose conditions.


Assuntos
Ilhotas Pancreáticas , Polipeptídeo Pancreático , Animais , Cálcio , Ensaio de Imunoadsorção Enzimática , Polipeptídeo Inibidor Gástrico/farmacologia , Glucose/farmacologia , Insulina , Camundongos
11.
Biochem Biophys Res Commun ; 611: 38-45, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35477091

RESUMO

Autophagy is known to play a pivotal role in ß-cell function. While the lifelong inhibition of autophagy through Atg7 deletion in ß cells has been demonstrated to lead to impaired glucose tolerance together with ß-cell dysfunction, the temporal association between autophagy inhibition and ß-cell dysfunction remains unclear. To address such questions, inducible ß-cell-specific Atg7-knockout (ißAtg7KO) mice were generated, and autophagy inhibition was induced for two different time durations. Whereas 2 weeks of Atg7 ablation was sufficient to induce autophagy deficiency, confirmed by the accumulation of p62, ißAtg7KO mice exhibited normal glucose tolerance. In contrast, prolonged autophagy deficiency for 6 weeks resulted in glucose intolerance together with impaired insulin secretion. Direct mRNA sequencing and pathway analysis revealed that the gene set associated with insulin secretion was downregulated only after the 6-week prolonged autophagy inhibition. Furthermore, we identified a novel gene, Sprr1a, which was expressed at more than 50-fold higher levels during both the 2-week and 6-week autophagy inhibition. These findings suggest that autophagy insufficiency cumulatively leads to ß-cell failure after a certain interval, accompanied by stepwise alterations of gene expression patterns.


Assuntos
Intolerância à Glucose , Células Secretoras de Insulina , Animais , Autofagia/fisiologia , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Knockout
12.
J Diabetes Investig ; 13(7): 1140-1148, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35396829

RESUMO

AIMS/INTRODUCTION: Several research groups have reported methods for quantifying pancreatic beta cell (ß-cell) injury by measuring ß-cell-specific CpG unmethylation of the insulin gene in circulation using digital droplet PCR or next-generation sequencing. However, these methods have certain disadvantages, such as the need to consider the background signal owing to the small number of target CpG sites and the need for unique equipment. MATERIALS AND METHODS: We established a novel method for detecting four CpG unmethylations of the insulin gene using two-step amplification refractory mutation system PCR. We applied it to type 1 diabetes (T1D) patients with a wide range of disease durations and to healthy adults. RESULTS: The assay showed high linearity and could detect a single copy of unmethylated insulin DNA in experiments using methylated and unmethylated plasmid DNA. The unmethylated insulin DNA level in the type 1 diabetes group, whose ß-cell mass was considerably reduced, was similar to that of healthy adults. An inverse correlation was observed between copy number and disease duration in patients with unmethylated insulin DNA-positive type 1 diabetes. CONCLUSIONS: We developed a novel method for detecting unmethylated insulin DNA in circulation that can be performed using a conventional real-time PCR system. This method would be useful for analyzing dynamic profiles of ß-cells in human disease such as type 1 diabetes.


Assuntos
Ácidos Nucleicos Livres , Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Adulto , Ácidos Nucleicos Livres/metabolismo , DNA/genética , Metilação de DNA , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Humanos , Insulina/genética , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Mutação , Reação em Cadeia da Polimerase em Tempo Real , Sulfitos
13.
Cell Rep ; 38(7): 110377, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35172145

RESUMO

The precise developmental dynamics of the pancreatic islet endocrine cell types, and their interrelation, are unknown. Some authors claim the persistence of islet cell differentiation from precursor cells after birth ("neogenesis"). Here, using four conditional cell lineage tracing ("pulse-and-chase") murine models, we describe the natural history of pancreatic islet cells, once they express a hormone gene, until late in life. Concerning the contribution of early-appearing embryonic hormone-expressing cells to the formation of islets, we report that adult islet cells emerge from embryonic hormone-expressing cells arising at different time points during development, without any evidence of postnatal neogenesis. We observe specific patterns of hormone gene activation and switching during islet morphogenesis, revealing that, within each cell type, cells have heterogeneous developmental trajectories. This likely applies to most maturating cells in the body, and explains the observed phenotypic variability within differentiated cell types. Such knowledge should help devising novel regenerative therapies.


Assuntos
Envelhecimento/fisiologia , Feto/citologia , Hormônios/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/embriologia , Animais , Doxiciclina/farmacologia , Desenvolvimento Embrionário/efeitos dos fármacos , Feto/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Glucagon/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Camundongos Transgênicos , Somatostatina/metabolismo , Coloração e Rotulagem
15.
Mol Metab ; 54: 101338, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34547510

RESUMO

OBJECTIVE: Activating transcription factor 4 (ATF4) is a transcriptional regulator of the unfolded protein response and integrated stress response (ISR) that promote the restoration of normal endoplasmic reticulum (ER) function. Previous reports demonstrated that dysregulation of the ISR led to development of severe diabetes. However, the contribution of ATF4 to pancreatic ß-cells remains poorly understood. In this study, we aimed to analyze the effect of ISR enhancer Sephin1 and ATF4-deficient ß-cells to clarify the role of ATF4 in ß-cells under ER stress conditions. METHODS: To examine the role of ATF4 in vivo, ISR enhancer Sephin1 (5 mg/kg body weight, p.o.) was administered daily for 21 days to Akita mice. We also established ß-cell-specific Atf4 knockout (ßAtf4-KO) mice that were further crossed with Akita mice. These mice were analyzed for characteristics of diabetes, ß-cell function, and morphology of the islets. To identify the downstream factors of ATF4 in ß-cells, the islets of ßAtf4-KO mice were subjected to cDNA microarray analyses. To examine the transcriptional regulation by ATF4, we also performed in situ PCR analysis of pancreatic sections from mice and ChIP-qPCR analysis of CT215 ß-cells. RESULTS: Administration of the ISR enhancer Sephin1 improved glucose metabolism in Akita mice. Sephin1 also increased the insulin-immunopositive area and ATF4 expression in the pancreatic islets. Akita/ßAtf4-KO mice exhibited dramatically exacerbated diabetes, shown by hyperglycemia at an early age, as well as a remarkably short lifespan owing to diabetic ketoacidosis. Moreover, the islets of Akita/ßAtf4-KO mice presented increased numbers of cells stained for glucagon, somatostatin, and pancreatic polypeptide and increased expression of aldehyde dehydrogenase 1 family member 3, a marker of dedifferentiation. Using microarray analysis, we identified atonal BHLH transcription factor 8 (ATOH8) as a downstream factor of ATF4. Deletion of ATF4 in ß-cells showed reduced Atoh8 expression and increased expression of undifferentiated markers, Nanog and Pou5f1. Atoh8 expression was also abolished in the islets of Akita/ßAtf4-KO mice. CONCLUSIONS: We conclude that transcriptional regulation by ATF4 maintains ß-cell identity via ISR modulation. This mechanism provides a promising target for the treatment of diabetes.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Células Secretoras de Insulina/metabolismo , Fator 4 Ativador da Transcrição/deficiência , Animais , Estresse do Retículo Endoplasmático , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
16.
Diabetologia ; 64(12): 2803-2816, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34498099

RESUMO

AIMS/HYPOTHESIS: Pancreatic polypeptide (PP) cells, which secrete PP (encoded by the Ppy gene), are a minor population of pancreatic endocrine cells. Although it has been reported that the loss of beta cell identity might be associated with beta-to-PP cell-fate conversion, at present, little is known regarding the characteristics of Ppy-lineage cells. METHODS: We used Ppy-Cre driver mice and a PP-specific monoclonal antibody to investigate the association between Ppy-lineage cells and beta cells. The molecular profiles of endocrine cells were investigated by single-cell transcriptome analysis and the glucose responsiveness of beta cells was assessed by Ca2+ imaging. Diabetic conditions were experimentally induced in mice by either streptozotocin or diphtheria toxin. RESULTS: Ppy-lineage cells were found to contribute to the four major types of endocrine cells, including beta cells. Ppy-lineage beta cells are a minor subpopulation, accounting for 12-15% of total beta cells, and are mostly (81.2%) localised at the islet periphery. Unbiased single-cell analysis with a Ppy-lineage tracer demonstrated that beta cells are composed of seven clusters, which are categorised into two groups (i.e. Ppy-lineage and non-Ppy-lineage beta cells). These subpopulations of beta cells demonstrated distinct characteristics regarding their functionality and gene expression profiles. Ppy-lineage beta cells had a reduced glucose-stimulated Ca2+ signalling response and were increased in number in experimental diabetes models. CONCLUSIONS/INTERPRETATION: Our results indicate that an unexpected degree of beta cell heterogeneity is defined by Ppy gene activation, providing valuable insight into the homeostatic regulation of pancreatic islets and future therapeutic strategies against diabetes. DATA AVAILABILITY: The single-cell RNA sequence (scRNA-seq) analysis datasets generated in this study have been deposited in the Gene Expression Omnibus (GEO) under the accession number GSE166164 ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE166164 ).


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Animais , Glucose/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Estreptozocina/farmacologia
17.
Diabetes ; 70(11): 2608-2625, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34462257

RESUMO

O-GlcNAc transferase (OGT), a nutrient sensor sensitive to glucose flux, is highly expressed in the pancreas. However, the role of OGT in the mitochondria of ß-cells is unexplored. In this study, we identified the role of OGT in mitochondrial function in ß-cells. Constitutive deletion of OGT (ßOGTKO) or inducible ablation in mature ß-cells (ißOGTKO) causes distinct effects on mitochondrial morphology and function. Islets from ßOGTKO, but not ißOGTKO, mice display swollen mitochondria, reduced glucose-stimulated oxygen consumption rate, ATP production, and glycolysis. Alleviating endoplasmic reticulum stress by genetic deletion of Chop did not rescue the mitochondrial dysfunction in ßOGTKO mice. We identified altered islet proteome between ßOGTKO and ißOGTKO mice. Pancreatic and duodenal homeobox 1 (Pdx1) was reduced in in ßOGTKO islets. Pdx1 overexpression increased insulin content and improved mitochondrial morphology and function in ßOGTKO islets. These data underscore the essential role of OGT in regulating ß-cell mitochondrial morphology and bioenergetics. In conclusion, OGT couples nutrient signal and mitochondrial function to promote normal ß-cell physiology.


Assuntos
Diabetes Mellitus Tipo 2/genética , Proteínas de Homeodomínio/metabolismo , Mitocôndrias/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Transativadores/metabolismo , Animais , Transporte de Elétrons , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Predisposição Genética para Doença , Teste de Tolerância a Glucose , Proteínas de Homeodomínio/genética , Secreção de Insulina , Camundongos , Camundongos Knockout , N-Acetilglucosaminiltransferases/genética , Proteômica , Transativadores/genética
18.
Nat Commun ; 12(1): 4458, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294685

RESUMO

The cellular identity of pancreatic polypeptide (Ppy)-expressing γ-cells, one of the rarest pancreatic islet cell-type, remains elusive. Within islets, glucagon and somatostatin, released respectively from α- and δ-cells, modulate the secretion of insulin by ß-cells. Dysregulation of insulin production raises blood glucose levels, leading to diabetes onset. Here, we present the genetic signature of human and mouse γ-cells. Using different approaches, we identified a set of genes and pathways defining their functional identity. We found that the γ-cell population is heterogeneous, with subsets of cells producing another hormone in addition to Ppy. These bihormonal cells share identity markers typical of the other islet cell-types. In mice, Ppy gene inactivation or conditional γ-cell ablation did not alter glycemia nor body weight. Interestingly, upon ß-cell injury induction, γ-cells exhibited gene expression changes and some of them engaged insulin production, like α- and δ-cells. In conclusion, we provide a comprehensive characterization of γ-cells and highlight their plasticity and therapeutic potential.


Assuntos
Insulina/biossíntese , Células Secretoras de Polipeptídeo Pancreático/metabolismo , Polipeptídeo Pancreático/metabolismo , Precursores de Proteínas/metabolismo , Animais , Glicemia/metabolismo , Peso Corporal , Linhagem da Célula/genética , Feminino , Técnicas de Introdução de Genes , Humanos , Células Secretoras de Insulina/classificação , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Pâncreas/citologia , Pâncreas/embriologia , Pâncreas/crescimento & desenvolvimento , Polipeptídeo Pancreático/deficiência , Polipeptídeo Pancreático/genética , Células Secretoras de Polipeptídeo Pancreático/classificação , Células Secretoras de Polipeptídeo Pancreático/citologia , Gravidez , RNA-Seq
19.
iScience ; 23(12): 101774, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33294783

RESUMO

Heterogeneity of gene expression and rarity of replication hamper molecular analysis of ß-cell mass restoration in adult pancreas. Here, we show transcriptional dynamics in ß-cell replication process by single-cell RNA sequencing of murine pancreas with or without partial pancreatectomy. We observed heterogeneity of Ins1-expressing ß-cells and identified the one cluster as replicating ß-cells with high expression of cell proliferation markers Pcna and Mki67. We also recapitulated cell cycle transition accompanied with switching expression of cyclins and E2F transcription factors. Both transient activation of endoplasmic reticulum stress responders like Atf6 and Hspa5 and elevated expression of tumor suppressors like Trp53, Rb1, and Brca1 and DNA damage responders like Atm, Atr, Rad51, Chek1, and Chek2 during the transition to replication associated fine balance of cell cycle progression and protection from DNA damage. Taken together, these results provide a high-resolution map depicting a sophisticated genetic circuit for replication of the ß-cells.

20.
FASEB J ; 34(10): 13949-13958, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32844470

RESUMO

Obesity is a health problem worldwide, and brown adipose tissue (BAT) is important for energy expenditure. Here, we explored the role of leukotriene A4 hydrolase (LTA4 H), a key enzyme in the synthesis of the lipid mediator leukotriene B4 (LTB4 ), in diet-induced obesity. LTA4 H-deficient (LTA4 H-KO) mice fed a high-fat diet (HFD) showed a lean phenotype, and bone-marrow transplantation studies revealed that LTA4 H-deficiency in non-hematopoietic cells was responsible for this lean phenotype. LTA4 H-KO mice exhibited greater energy expenditure, but similar food intake and fecal energy loss. LTA4 H-KO BAT showed higher expression of thermogenesis-related genes. In addition, the plasma thyroid-stimulating hormone and thyroid hormone concentrations, as well as HFD-induced catecholamine secretion, were higher in LTA4 H-KO mice. In contrast, LTB4 receptor (BLT1)-deficient mice did not show a lean phenotype, implying that the phenotype of LTA4 H-KO mice is independent of the LTB4 /BLT1 axis. These results indicate that LTA4 H mediates the diet-induced obesity by reducing catecholamine and thyroid hormone secretion.


Assuntos
Metabolismo Energético , Epóxido Hidrolases/metabolismo , Obesidade/genética , Hormônios Tireóideos/sangue , Tireotropina/sangue , Tecido Adiposo Marrom/metabolismo , Animais , Catecolaminas/metabolismo , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Epóxido Hidrolases/deficiência , Epóxido Hidrolases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , Fenótipo , Receptores do Leucotrieno B4/genética , Receptores do Leucotrieno B4/metabolismo , Termogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...