Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(35): e2301831, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37849230

RESUMO

In vitro reconstruction of highly mature engineered heart tissues (EHTs) is attempted for the selection of cardiotoxic drugs suitable for individual patients before administration. Mechanical contractile force generated in the EHTs is known to be a critical indicator for evaluating the EHT response. However, measuring contractile force requires anchoring the EHT in a tailored force-sensing cell culture chamber, causing technical difficulties in the stable evaluation of contractile force in long-term culture. This paper proposes a hydrogel-sheathed human induced pluripotent stem cell (hiPSC)-derived heart microtissue (H3 M) that can provide an anchor-free contractile force measurement platform in commonly used multi-well plates. The contractile force associated with tissue formation and drug response is calculated by motion tracking and finite element analysis on the bending angle of the hydrogel sheath. From the experiment of the drug response, H3 M is an excellent drug screening platform with high sensitivity and early testing capability compared to conventionally anchored EHT. This unique platform would be useful and versatile for regenerative therapy and drug discovery research in EHT.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Miócitos Cardíacos , Hidrogéis , Fenômenos Mecânicos , Contração Muscular
2.
Biotechnol Bioeng ; 119(5): 1327-1336, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35067931

RESUMO

This paper describes up-scalable microfiber-shaped tissues for macroscale tendon tissue reconstruction in vitro. C3H10T1/2 cells were encapsulated in a calcium alginate hydrogel microfiber that was fabricated via a double coaxial microfluidic device. The C3H10T1/2 cells gradually merged to construct the microfiber-shaped tendon-like tissue. Our microfiber-shaped tendon-like tissues were alive and maintained their microfiber-shaped morphology over 600 days. Immunostaining and real-time quantitative polymerase chain reaction analyses showed that our fabricated microfiber-shaped tendon-like tissue properly expressed tenomodulin and the orientation of the filaments of actin, which are one of the characteristics of tendon tissue in vivo. Furthermore, a macroscale tendon tissue assembly with ∼1 cm in length and ∼200 µm in thickness was successfully constructed by bundling the microfiber-shaped tendon-like tissues together. This feature enabled us to fabricate a macroscale tendon tissue with uniform cell distribution. We believe that our fabricated microfiber-shaped tendon-like tissue would be a suitable strategy to reconstruct tendon tissue in vitro for the treatments of tendon-related injuries.


Assuntos
Alginatos , Hidrogéis , Contagem de Células , Dispositivos Lab-On-A-Chip , Tendões , Engenharia Tecidual
3.
J Chem Phys ; 140(8): 084703, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24588187

RESUMO

The effects of hydrogen exposure on the electronic structure of two types of SrTiO3(001) surfaces, oxygen-deficient (OD) and nearly-vacancy-free (NVF) surfaces, were investigated with ultraviolet photoemission spectroscopy and nuclear reaction analysis. Upon molecular hydrogen exposure to the OD surface which reveals in-gap states at 1.3 eV below the Fermi level, the in-gap state intensity was reduced to half the initial value at a hydrogen coverage of 0.9 ± 0.7 × 10(14) cm(-2). On the NVF surface which has no in-gap state, on the other hand, atomic-hydrogen exposure induced in-gap states, and the hydrogen saturation coverage was evaluated to be 3.1 ± 0.8 × 10(14) cm(-2). We argue that H is positively charged as H(∼0.3 +) on the NVF surface by being coordinated to the O atom, whereas H is negatively charged as H(-) on the OD surface by occupying the oxygen vacancy site. The stability of H(-) at the oxygen vacancy site is discussed.

4.
J Phys Condens Matter ; 25(16): 162202, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23503170

RESUMO

The influence of electron irradiation and the subsequent oxygen adsorption on the electronic structure of an SrTiO3(001) surface was investigated by ultraviolet photoemission spectroscopy (UPS). Electron irradiation induced an in-gap state (IGS) as observed by UPS keeping the surface 1 × 1, which is considered to originate from oxygen vacancies on the topmost surface due to the electron-stimulated desorption (ESD) of oxygen. Electron irradiation also caused a downward shift of the valence band maximum, indicating downward band bending and the formation of a conductive layer on the surface. Adsorption of oxygen on the electron-irradiated surface, on the other hand, reduced the intensity of the IGS along with yielding upward band bending, which points to disappearance of the conductive layer. The results show that ESD and oxygen adsorption can be used to control the surface electronic structure switching between semiconducting and metallic regimes by changing the density of the oxygen vacancies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...