Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(43): 15208-15214, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37846062

RESUMO

The interstitial fluid of the skin contains glucose levels comparable to those of blood. Noninvasive glucose sensing by microwaves has great potential to relieve diabetics from the burden of daily blood sampling, but improving the selectivity of this method remains a challenge. This study reports a dielectrically equivalent multilayer skin phantom and provides insight into the criteria for noninvasive glucose sensing by conducting dielectric analysis. The skin phantom was a hydrogel composed of gelatin, glucose, sodium chloride, and water covered by paraffin-impregnated paper. Investigations conducted on a wide range of component concentrations revealed characteristic relative permittivity and dielectric loss determined by the amount of electrolyte and solution that was independent of the amount of glucose. Since the microwave response due to glucose tends to be buried in noise, we developed a flowchart that first identifies the amounts of electrolytes and proteins, which are the major components other than glucose, and then quantifies the remaining glucose content. This noninvasive glucose sensing method would not be limited to the medical healthcare field; it could potentially be used in food manufacturing processes, livestock farming, and plant cultivation management.


Assuntos
Glucose , Micro-Ondas , Imagens de Fantasmas , Água , Pele/química
2.
ACS Appl Mater Interfaces ; 14(39): 44697-44703, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36095329

RESUMO

Ingestible electronics monitor biometric information from outside the body. Making them with harmless or digestible materials will contribute to further reducing the burden on the patient's oral intake. Here, considering that the inductive part plays an important role in communications, we demonstrate a degradable inductor fabricated with harmless substances. Such a transient component must meet conflicting requirements for both operation and disassembly. Therefore, we integrated a substrate made of gelatin, a thermally degradable material, and a precision coil pattern made of edible gold or silver leaf. However, gelatin itself lost its initial shape easily due to quick sol-gel changes in physiological conditions. Thus, we managed the gelatin's thermal responsiveness by using a tangle of gelatin/chitosan gel networks and genipin, an organic cross-linking agent, and gained insights into the criteria for developing transient devices with thermo-degradability. In addition, to compensate for the lack of water resistance and low conductivity of thin metal foils, we propose a laminated structure with oleogel (beeswax/olive oil). LCR resonance circuits, by connecting a commercial capacitor to the coil, worked wirelessly in the megahertz band and gradually degraded in a warm-water environment. The presented organic electronics will contribute to the future development of transient wireless communications for implantable and ingestible medical devices or environmental sensors with natural and harmless ingredients.


Assuntos
Quitosana , Gelatina , Quitosana/química , Gelatina/química , Ouro , Humanos , Hidrogéis/química , Metilgalactosídeos , Azeite de Oliva , Compostos Orgânicos , Folhas de Planta , Água/química
3.
Biosensors (Basel) ; 12(8)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-36005010

RESUMO

We developed a novel measuring and data-processing method for performing electrochemical surface plasmon resonance (EC-SPR) on sensor surfaces for which detecting a specific SPR angle is difficult, such as a polymer having a non-uniform thickness with coloration. SPR measurements are used in medicine and basic research as an analytical method capable of molecular detection without labeling. However, SPR is not good for detecting small molecules with small refractive index changes. The proposed EC-SPR, which combines SPR measurements with an electrochemical reaction, makes it possible to measure small molecules without increasing the number of measurement steps. A drawback of EC-SPR is that it is difficult to detect a specific SPR angle on electron mediators, and it was found that it may not be possible to capture all the features produced. The novel method we describe here is different from the conventional one in which a specific SPR angle is obtained from an SPR curve; rather, it processes the SPR curve itself and can efficiently aggregate the feature displacements in the SPR curves that are dispersed through multiple angles. As an application, we used our method to detect small concentrations of H2O2 (LOD 0.7 µM) and glutamate (LOD 5 µM).


Assuntos
Peróxido de Hidrogênio , Ressonância de Plasmônio de Superfície , Refratometria , Ressonância de Plasmônio de Superfície/métodos
4.
Anal Chem ; 94(19): 7060-7065, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35468282

RESUMO

A critical microchannel technique is to isolate specific objects, such as cells, in a biological solution. Generally, this particle sorting is achieved by designing a microfluidic device and tuning its control values; however, unpredictable motions of the particle mixture make this approach time-consuming and labor intensive. Here, we show that microfluidic control with reinforced learning characterized by utilizing failure results can maximize the training effect with limited data. This method uses microscopic images of the separation process, including failed conditions (inappropriate flow speeds or dilution rates of biological samples), and insights for efficient learning are provided by setting gradient rewards according to the degree of failure. Once learning is performed in this manner, the optimal separating condition for other related samples can be automatically found. Failed experiments are not wasteful; they increase training data and make it easier to reach correct answers. This device control could be useful in automatic synthetic chemistry, biomedical analysis, and microfabrication robotics.


Assuntos
Técnicas Analíticas Microfluídicas , Robótica , Dispositivos Lab-On-A-Chip , Aprendizado de Máquina
5.
Sci Rep ; 12(1): 930, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042971

RESUMO

Scientists who design chemical substances often use materials informatics (MI), a data-driven approach with either computer simulation or artificial intelligence (AI). MI is a valuable technique, but applying it to layered structures is difficult. Most of the proposed computer-aided material search techniques use atomic or molecular simulations, which are limited to small areas. Some AI approaches have planned layered structures, but they require a physical theory or abundant experimental results. There is no universal design tool for multilayer films in MI. Here, we show a multilayer film can be designed through machine learning (ML) of experimental procedures extracted from chemical-coating articles. We converted material names according to International Union of Pure and Applied Chemistry rules and stored them in databases for each fabrication step without any physicochemical theory. Compared with experimental results which depend on authors, experimental protocol is superiority at almost unified and less data loss. Connecting scientific knowledge through ML enables us to predict untrained film structures. This suggests that AI imitates research activity, which is normally inspired by other scientific achievements and can thus be used as a general design technique.

6.
ACS Appl Mater Interfaces ; 13(49): 59006-59011, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34817996

RESUMO

Ingestible electronic devices are tools for exploring the condition of the gastrointestinal tract and adjacent organs without a burden on the patients. Making them safe requires that they be fabricated with harmless materials. In this study, we developed a capacitor using food materials for a wireless sensing component. As a safer approach, gelatin, an ingredient responsive to external stimuli, was selected as a substrate for deforming the device at the desired time. Gelatin experiences sol-gel changes near body temperature; however, it is instantly dissolved and is not suitable for long-term use in the body. Thus, to maintain its thermal responsiveness, we used a tangle of gel networks created by mixing gelatin and chitosan without cross-linking agents. Our search for the appropriate gel mixing ratio provided insights into the criteria for achieving slow sol-gel changes and how to improve the thermal durability. We transferred a sputtered gold film onto the gel films to produce electrodes and then made a capacitor by sandwiching a naturally dried sodium polyacrylate film between the electrodes. The resonance frequency measurement of RLC circuits in combination with commercial plane coils showed that the capacitor worked in the megahertz band and that it collapsed when immersed in hot water. Gastric acid detection was also achieved with this capacitor. This electronic part will contribute to the development of implanted or ingestible medical devices and a wide range of environmental sensors composed of natural ingredients.


Assuntos
Quitosana/química , Gelatina/química , Temperatura , Animais , Eletrodos , Géis/química , Teste de Materiais , Suínos
7.
Anal Chem ; 89(19): 10391-10396, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28872848

RESUMO

A liquid droplet in contact with a superhydrophobic surface can be used to collect dissolved trace materials after evaporating the solvent. This process effect enhances detection limits, but a liquid droplet easily rolls off a superhydrophobic surface. Keeping it at a specific collecting spot area is challenging. Here the means for controlling and capturing a liquid droplet on a superhydrophobic surface is demonstrated. To induce a liquid droplet to a collecting spot, its rolling direction was controlled by two superhydrophobic fabric guides. The liquid droplet was then captured by hydrophilic polymer and hydrophilic nanoparticles at the measuring spot. After removing the solvent, the trace compounds were evaluated with a colorimetric analysis visible to the naked eye.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...