Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 602: 49-56, 2022 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-35248949

RESUMO

The deletion of the Hhex (Hematopoietically expressed homeobox) gene causes agenesis of the liver and polycystic liver disease depending on its timing. The present study was undertaken to determine the role of the Hhex gene in not only signaling cascades to cyst and abnormal bile duct formation but also the liver progenitor contribution to cystic development. Liver-specific Hhex knockout mice (Alb-Cre/HhexloxP/loxP) in adult stages were used. Wild-type and conditional knockout (cKO) livers were immunohistologically compared for cell growth, and gene expression of liver functions, biliary markers and cystic markers. In Hhex cKO livers, cyst formation and dilated intrahepatic bile ducts were noted, which resembled the histology of the von Meyenburg complex. Ki67 immunohistochemistry showed that the growth activity in bile ducts and cysts of cKO livers was elevated compared with that of wild-type livers. There were far fewer liver progenitor cells or bile ductule cells around portal veins of cKO livers than in wild-type livers. Several liver-enriched transcription factors, including Foxa1 and Foxa2, were heterogeneously expressed in bile ducts and cysts of cKO livers whereas their expression in wild-type bile ducts was comparatively homogeneous. PC1 and PC2 immunohistochemistry revealed their up-regulation in cysts of cKO livers. These data indicate that Hhex is not only required for proper bile duct morphogenesis, but is also involved in cyst formation through promoted cell growth. Liver progenitor cells may form cysts. Unbalanced expression of liver-enriched transcription factors might be involved in cyst formation. Hhex cKO mice may be a good animal model for hepatic cystic diseases.


Assuntos
Cistos , Hepatopatias , Animais , Cistos/metabolismo , Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fígado/metabolismo , Hepatopatias/metabolismo , Camundongos , Camundongos Knockout , Células-Tronco/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
J Anat ; 232(2): 200-213, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29205342

RESUMO

The mammalian liver has a structural and functional unit called the liver lobule, in the periphery of which the portal triad consisting of the portal vein, bile duct and hepatic artery is developed. This type of hepatic architecture is detectable in many other vertebrates, including amphibians and birds, whereas intrahepatic bile ducts run independently of portal vein distribution in actinopterygians such as the salmon and tilapia. It remains to be clarified how the hepatic architectures are phylogenetically developed among vertebrates. The present study morphologically and immunohistochemically analyzed the hepatic structures of various vertebrates, including as many classes and subclasses as possible, with reference to intrahepatic bile duct distribution. The livers of vertebrates belonging to the Agnatha, Chondrichthyes, Amphibia, Aves, Mammalia, and Actinopterygii before Elopomorpha, had the portal triad-type architecture. The Anguilliformes livers developed both periportal bile ducts and non-periportal bile ducts. The Otocephala and Euteleostei livers had independent configuration of bile ducts and portal veins. Pancreatic tissues penetrated the liver parenchyma along portal veins in the Euteleostei. The liver of the lungfish, which shares the same origin with amphibians, did not have the portal triad-type architecture. Teleostei and lungfish livers had ductular development in the liver parenchyma similar to oval cell proliferation in injured mammalian livers. Euteleostei livers had penetration of significant numbers of independent portal veins from their intestines, suggesting that each liver lobe might receive a different blood supply. The hepatic architectures of the portal triad-type changed to non-portal triad-type architecture along the evolution of the Actinopterygii. The hepatic architecture of the lungfish resembles that of the Actinopterygii after Elopomorpha in intrahepatic biliary configuration, which may be an example of convergent evolution.


Assuntos
Fígado/anatomia & histologia , Vertebrados/anatomia & histologia , Animais , Evolução Biológica , Filogenia
3.
Exp Anim ; 65(2): 135-46, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-26633692

RESUMO

The liver has a remarkable regeneration capacity, and, after surgical removal of its mass, the remaining tissue undergoes rapid regeneration through compensatory growth of its constituent cells. Although hepatocytes synchronously proliferate under the control of various signaling molecules from neighboring cells, there have been few detailed analyses on how biliary cells regenerate for their cell population after liver resection. The present study was undertaken to clarify how biliary cells regenerate after partial hepatectomy of mice through extensive analyses of their cell cycle progression and gene expression using immunohistochemical and RT-PCR techniques. When expression of PCNA, Ki67 antigen, topoisomerase IIα and phosphorylated histone H3, which are cell cycle markers, was immunohistochemically examined during liver regeneration, hepatocytes had a peak of the S phase and M phase at 48-72 h after resection. By contrast, biliary epithelial cells had much lower proliferative activity than that of hepatocytes, and their peak of the S phase was delayed. Mitotic figures were rarely detectable in biliary cells. RT-PCR analyses of gene expression of biliary markers such as Spp1 (osteopontin), Epcam and Hnf1b demonstrated that they were upregulated during liver regeneration. Periportal hepatocytes expressed some of biliary markers, including Spp1 mRNA and protein. Some periportal hepatocytes had downregulated expression of HNF4α and HNF1α. Gene expression of Notch signaling molecules responsible for cell fate decision of hepatoblasts to biliary cells during development was upregulated during liver regeneration. Notch signaling may be involved in biliary regeneration.


Assuntos
Ductos Biliares/citologia , Ciclo Celular , Células Epiteliais/citologia , Hepatectomia , Hepatócitos/citologia , Regeneração Hepática/genética , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/metabolismo , Expressão Gênica , Hepatócitos/metabolismo , Imuno-Histoquímica , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...