Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000160

RESUMO

222 nm far-ultraviolet (F-UV) light has a bactericidal effect similar to deep-ultraviolet (D-UV) light of about a 260 nm wavelength. The cytotoxic effect of 222 nm F-UV has not been fully investigated. DLD-1 cells were cultured in a monolayer and irradiated with 222 nm F-UV or 254 nm D-UV. The cytotoxicity of the two different wavelengths of UV light was compared. Changes in cell morphology after F-UV irradiation were observed by time-lapse imaging. Differences in the staining images of DNA-binding agents Syto9 and propidium iodide (PI) and the amount of cyclobutane pyrimidine dimer (CPD) were examined after UV irradiation. F-UV was cytotoxic to the monolayer culture of DLD-1 cells in a radiant energy-dependent manner. When radiant energy was set to 30 mJ/cm2, F-UV and D-UV showed comparable cytotoxicity. DLD-1 cells began to expand immediately after 222 nm F-UV light irradiation, and many cells incorporated PI; in contrast, PI uptake was at a low level after D-UV irradiation. The amount of CPD, an indicator of DNA damage, was higher in cells irradiated with D-UV than in cells irradiated with F-UV. This study proved that D-UV induced apoptosis from DNA damage, whereas F-UV affected membrane integrity in monolayer cells.


Assuntos
Apoptose , Membrana Celular , Neoplasias do Colo , Dano ao DNA , Raios Ultravioleta , Humanos , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/efeitos da radiação , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Apoptose/efeitos da radiação , Dímeros de Pirimidina/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-38825404

RESUMO

BACKGROUND: Periodontal disease is the leading cause of tooth loss, and an association between periodontal disease and non-oral systemic diseases has been shown. Formation of biofilm by periodontal pathogens such as Fusobacterium nucleatum, Porphyromonas gingivalis, and Streptococcus mutans and their resistance to antimicrobial agents are at the root of persistent and chronic bacterial infections. METHODS: The bactericidal effect of far-ultraviolet (F-UV) light irradiation at 222 nm on periodontal bacteria was assessed qualitatively and quantitatively. The effect of biofilm disruption by F-UV light on periodontal bacteria was examined by crystal violet staining, and the morphologic changes of the biofilm after F-UV irradiation were explored by confocal laser microscopy and scanning electron microscopy. We developed a thin fiber-type 222 nm F-UV irradiator and studied its safety and effect of reducing bacteria in rodent models. RESULTS: F-UV light at 222 nm had a bactericidal effect on F. nucleatum, P. gingivalis, and S. mutans. Irradiation with F-UV light reduced the biofilm formed by the bacteria and sterilized them from within. Confocal laser microscopy showed a clear reduction in biofilm thickness, and scanning electron microscopy confirmed disintegration of the biofilm architecture. F-UV irradiation was less damaging to DNA and less cytotoxic than deep-ultraviolet light, and it reduced bacterial counts on the tooth surface. CONCLUSION: F-UV irradiation has the potential to destroy biofilm and act as a bactericide against pathogenic bacteria in the biofilm.

3.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142506

RESUMO

DNA methylation of both viral and host DNA is one of the major mechanisms involved in the development of Epstein-Barr virus-associated gastric carcinoma (EBVaGC); thus, epigenetic treatment using demethylating agents would seem to be promising. We have verified the effect of MC180295, which was discovered by screening for demethylating agents. MC180295 inhibited cell growth of the EBVaGC cell lines YCCEL1 and SNU719 in a dose-dependent manner. In a cell cycle analysis, growth arrest and apoptosis were observed in both YCCEL1 and SNU719 cells treated with MC180295. MKN28 cells infected with EBV were sensitive to MC180295 and showed more significant inhibition of cell growth compared to controls without EBV infection. Serial analysis of gene expression analysis showed the expression of genes belonging to the role of BRCA1 in DNA damage response and cell cycle control chromosomal replication to be significantly reduced after MC180295 treatment. We confirmed with quantitative PCR that the expression levels of BRCA2, FANCM, RAD51, TOP2A, and CDC45 were significantly decreased by MC180295. LMP1 and BZLF1 are EBV genes with expression that is epigenetically regulated, and MC180295 could up-regulate their expression. In conclusion, MC180295 inhibited the growth of EBVaGC cells by suppressing DNA repair and the cell cycle.


Assuntos
Carcinoma , Infecções por Vírus Epstein-Barr , Neoplasias Gástricas , Carcinoma/patologia , Ciclo Celular/genética , DNA Helicases/metabolismo , Reparo do DNA , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/patologia , Herpesvirus Humano 4/genética , Humanos , Neoplasias Gástricas/patologia
4.
Am J Infect Control ; 50(11): 1268-1270, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35569612

RESUMO

Because extended-spectrum beta-lactamase (ESBL) infections can cause life-threatening disease and effective treatments need to be developed, we examined the bactericidal effect of far-ultraviolet C (far-UVC) light therapy on ESBL-producing Escherichia coli (E. coli). The bactericidal effect on 2 types of ESBL-producing E. coli was the same as that on the wild strain although the results of drug resistance tests varied among these strains. We believe that irradiation with far-UVC is effective in preventing infection by ESBL-producing E. coli in health care settings.

5.
Microorganisms ; 9(2)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669771

RESUMO

BACKGROUND: Fusobacterium nucleatum, which is associated with periodontitis and gingivitis, has been detected in colorectal cancer (CRC). METHODS: We evaluated the bactericidal effect of deep ultraviolet (DUV) light-emitting diode (LED) light therapy on F. nucleatum both qualitatively and quantitatively. Two DUV-LEDs with peak wavelengths of 265 and 280-nm were used. DNA damage to F. nucleatum was evaluated by the production of cyclobutane pyrimidine dimers (CPD) and pyrimidine (6-4) pyrimidone photoproducts (6-4PP). RESULTS: DUV-LEDs showed a bactericidal effect on F. nucleatum. No colony growth was observed after 3 min of either 265 nm or 280 nm DUV-LED irradiation. The survival rates of F. nucleatum under 265 nm DUV-LED light irradiation dropped to 0.0014% for 10 s and to 0% for 20 s irradiation. Similarly, the survival rate of F. nucleatum under 280 nm DUV-LED light irradiation dropped to 0.00044% for 10 s and 0% for 20 s irradiation. The irradiance at the distance of 35 mm from the DUV-LED was 0.265 mW/cm2 for the 265 nm LED and 0.415 mW/cm2 for the 280 nm LED. Thus, the radiant energy for lethality was 5.3 mJ/cm2 for the 265 nm LED and 8.3 mJ/cm2 for the 280 nm LED. Amounts of CPD and 6-4PP in F. nucleatum irradiated with 265 nm DUV-LED light were 6.548 ng/µg and 1.333 ng/µg, respectively. CONCLUSIONS: DUV-LED light exerted a bactericidal effect on F. nucleatum by causing the formation of pyrimidine dimers indicative of DNA damage. Thus, DUV-LED light therapy may have the potential to prevent CRC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...