Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(5): e0029424, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38624200

RESUMO

Aspergillus oryzae spores, when sprinkled onto steamed rice and allowed to propagate, are referred to as rice "koji." Agmatine, a natural polyamine derived from arginine through the action of arginine decarboxylase (ADC), is abundantly produced by solid state-cultivated rice koji of A. oryzae RIB40 under low pH conditions, despite the apparent absence of ADC orthologs in its genome. Mass spectrometry imaging revealed that agmatine was accumulated inside rice koji at low pH conditions, where arginine was distributed. ADC activity was predominantly observed in substrate mycelia and minimally in aerial mycelia. Natural ADC was isolated from solid state-cultivated A. oryzae rice koji containing substrate mycelia, using ammonium sulfate fractionation, ion exchange, and gel-filtration chromatography. The purified protein was subjected to sodium dodecyl sulfate poly-acrylamide gel electrophoresis (SDS-PAGE), and the detected peptide band was digested for identification by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The gene AO090102000327 of strain RIB40 was identified, previously annotated as phosphatidylserine decarboxylase (PSD), and encoded a 483-amino acid peptide. Recombinant protein encoded by AO090102000327 was expressed in Escherichia coli cells cultivated at 20°C, resulting in the detection of 49 kDa and 5 kDa peptides. The protein exhibited pyruvoyl-dependent decarboxylase activity, favoring arginine over ornithine and showing no activity with phosphatidylserine. The gene was designated Ao-adc1. Ao-ADC1 expression in rice koji at pH 4-6 was confirmed through western blotting using the anti-Ao-ADC1 serum. These findings indicate that Ao-adc1 encodes arginine decarboxylase involved in agmatine production.IMPORTANCEGene AO090102000327 in A. oryzae RIB40, previously annotated as a PSD, falls into a distinct clade when examining the phylogenetic distribution of PSDs. Contrary to the initial PSD annotation, our analysis indicates that the protein encoded by AO090102000327 is expressed in the substrate mycelia area of solid state-cultivated A. oryzae rice koji and functions as an arginine decarboxylase (ADC). The clade to which Ao-ADC1 belongs includes three other Ao-ADC1 paralogs (AO090103000445, AO090701000800, and AO090701000802) that presumably encode ADC rather than PSDs. Regarding PSD, AO090012000733 and AO090005001124 were speculated to be nonmitochondrial and mitochondrial PSDs in A. oryzae RIB40, respectively.


Assuntos
Aspergillus oryzae , Carboxiliases , Proteínas Fúngicas , Oryza , Aspergillus oryzae/genética , Aspergillus oryzae/enzimologia , Carboxiliases/genética , Carboxiliases/metabolismo , Carboxiliases/química , Oryza/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Agmatina/metabolismo
2.
J Biotechnol ; 380: 38-50, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38135188

RESUMO

We evaluated the suitability of Komagataeibacter europaeus, a vinegar production organism adept at synthetic media growth, as a host for heterologous gene expression. Cryptic plasmids (pGE1 and pGE2 derivatives) from K. europaeus strain KGMA0119 were employed as vectors for heterologous gene expression. The focus was placed on the groES promoter as a potential inducible switch. The groES promoter was fused with the EGFP gene and introduced into a pGE1 derivative to assess its suitability. Ethanol, acetic acid, and heat stresses were examined under various conditions for induction. EGFP transcription surged 600-fold when late logarithmic phase K. europaeus cells, cultured at 30 °C, endured heat stress at 40 °C, coupled with 20% acetic acid and 30% ethanol stress after an additional 6-hour cultivation. This robust induction system was then applied to express two proteins, Tth pol from the thermophilic bacterium Thermus thermophilus strain M1 and UPV230, a restriction enzyme from the acid-tolerant microorganism Ureaplasma parvum, known to cause vaginal infections and miscarriages. Both Tth pol and UPV230 were successfully expressed in K. europaeus cells and purified. The recovery of Tth pol from K. europaeus cells (480 µg protein per liter culture) was approximately half that from E. coli (960 µg protein per liter culture). In contrast, UPV230 recovery from K. europaeus cells (640 µg protein per liter culture) was nearly 10 times higher than that from Escherichia coli (66 µg protein per liter). The data highlights the potential of acetic acid bacteria as a host for producing acidophilic proteins. The shift in recognition from a 6-base sequence to a 4-base sequence of UPV230 was observed, accompanied by a change in structure as the pH transitioned from acidic pH to near-neutral pH.


Assuntos
Ácido Acético , Escherichia coli , Ácido Acético/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Alprostadil/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Etanol/metabolismo
3.
J Biosci Bioeng ; 135(4): 282-290, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36806411

RESUMO

Recombinase polymerase amplification (RPA) is an isothermal DNA amplification reaction at around 41 °C using recombinase (Rec), single-stranded DNA-binding protein (SSB), and strand-displacing DNA polymerase (Pol). Component instability and the need to store commercial kits in a deep freezer until use are some limitations of RPA. In a previous study, Bacillus stearothermophilus Pol (Bst-Pol) was used as a thermostable strand-displacing DNA polymerase in RPA. Here, we attempted to optimize the lyophilization conditions for RPA with newly isolated thermostable DNA polymerases for storage at room temperature. We isolated novel two thermostable strand-displacing DNA polymerases, one from a thermophilic bacterium Aeribacillus pallidus (H1) and the other from Geobacillus zalihae (C1), and evaluated their performances in RPA reaction. Urease subunit ß (UreB) DNA from Ureaplasma parvum serovar 3 was used as a model target for evaluation. The RPA reaction with H1-Pol or C1-Pol was performed at 41 °C with the in vitro synthesized standard UreB DNA. The minimal initial copy numbers of standard DNA from which the amplified products were observed were 600, 600, and 6000 copies for RPA with H1-Pol, C1-Pol, and Bst-Pol, respectively. Optimization was carried out using RPA components, showing that the lyophilized RPA reagents containing H1-Pol exhibited the same performance as the corresponding liquid RPA reagents. In addition, lyophilized RPA reagents with H1-Pol showed almost the same activity after two weeks of storage at room temperature as the freshly prepared liquid RPA reagents. These results suggest that lyophilized RPA reagents with H1-Pol are preferable to liquid RPA reagents for onsite use.


Assuntos
Geobacillus , Recombinases , Recombinases/genética , Recombinases/metabolismo , DNA Polimerase Dirigida por DNA/genética , Geobacillus/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Sensibilidade e Especificidade
4.
Appl Environ Microbiol ; 88(21): e0115322, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36226967

RESUMO

Proteins immobilized on biosilica which have superior reactivity and specificity and are innocuous to natural environments could be useful biological materials in industrial processes. One recently developed technique, living diatom silica immobilization (LiDSI), has made it possible to immobilize proteins, including multimeric and redox enzymes, via a cellular excretion system onto the silica frustule of the marine diatom Thalassiosira pseudonana. However, the number of application examples so far is limited, and the type of proteins appropriate for the technique is still enigmatic. Here, we applied LiDSI to six industrially relevant polypeptides, including protamine, metallothionein, phosphotriesterase, choline oxidase, laccase, and polyamine synthase. Protamine and metallothionein were successfully immobilized on the frustule as protein fusions with green fluorescent protein (GFP) at the N terminus, indicating that LiDSI can be used for polypeptides which are rich in arginine and cysteine. In contrast, we obtained mutants for the latter four enzymes in forms without green fluorescent protein. Immobilized phosphotriesterase, choline oxidase, and laccase showed enzyme activities even after the purification of frustule in the presence of 1% (wt/vol) octylphenoxy poly(ethyleneoxy)ethanol. An immobilized branched-chain polyamine synthase changed the intracellular polyamine composition and silica nanomorphology. These results illustrate the possibility of LiDSI for industrial applications. IMPORTANCE Proteins immobilized on biosilica which have superior reactivity and specificity and are innocuous to natural environments could be useful biological materials in industrial processes. Living diatom silica immobilization (LiDSI) is a recently developed technique for in vivo protein immobilization on the diatom frustule. We aimed to explore the possibility of using LiDSI for industrial applications by successfully immobilizing six polypeptides: (i) protamine (Oncorhynchus keta), a stable antibacterial agent; (ii) metallothionein (Saccharomyces cerevisiae), a metal adsorption molecule useful for bioremediation; (iii) phosphotriesterase (Sulfolobus solfataricus), a scavenger for toxic organic phosphates; (iv) choline oxidase (Arthrobacter globiformis), an enhancer for photosynthetic activity and yield of plants; (v) laccase (Bacillus subtilis), a phenol oxidase utilized for delignification of lignocellulosic materials; and (vi) branched-chain polyamine synthase (Thermococcus kodakarensis), which produces branched-chain polyamines important for DNA and RNA stabilization at high temperatures. This study provides new insights into the field of applied biological materials.


Assuntos
Diatomáceas , Hidrolases de Triester Fosfórico , Diatomáceas/metabolismo , Proteínas de Fluorescência Verde/genética , Lacase/genética , Lacase/metabolismo , Dióxido de Silício/química , Dióxido de Silício/metabolismo , Peptídeos/metabolismo , Poliaminas/metabolismo , Hidrolases de Triester Fosfórico/metabolismo , Metalotioneína/metabolismo , Protaminas/metabolismo
5.
Mol Biol Rep ; 49(4): 2847-2856, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35098395

RESUMO

BACKGROUND: Recombinase (uvsY and uvsX) from bacteriophage T4 is a key enzyme for recombinase polymerase amplification (RPA) that amplifies a target DNA sequence at a constant temperature with a single-stranded DNA-binding protein and a strand-displacing polymerase. The present study was conducted to examine the effects of the N- and C-terminal tags of uvsY on its function in RPA to detect SARS-CoV-2 DNA. METHODS: Untagged uvsY (uvsY-Δhis), N-terminal tagged uvsY (uvsY-Nhis), C-terminal tagged uvsY (uvsY-Chis), and N- and C-terminal tagged uvsY (uvsY-NChis) were expressed in Escherichia coli and purified. RPA reaction was carried out with the in vitro synthesized standard DNA at 41 °C. The amplified products were separated on agarose gels. RESULTS: The minimal initial copy numbers of standard DNA from which the amplified products were observed were 6 × 105, 60, 600, and 600 copies for the RPA with uvsY-Δhis, uvsY-Nhis, uvsY-Chis, and uvsY-NChis, respectively. The minimal reaction time at which the amplified products were observed were 20, 20, 30, and 20 min for the RPA with uvsY-Δhis, uvsY-Nhis, uvsY-Chis, and uvsY-NChis, respectively. The RPA with uvsY-Nhis exhibited clearer bands than that with either of other three uvsYs. CONCLUSIONS: The reaction efficiency of RPA with uvsY-Nhis was the highest, suggesting that uvsY-Nhis is suitable for use in RPA.


Assuntos
Bacteriófago T4/enzimologia , DNA Viral/química , Proteínas de Ligação a DNA/química , Proteínas de Membrana/química , Técnicas de Amplificação de Ácido Nucleico , SARS-CoV-2/química , Proteínas Virais/química , DNA Viral/genética , SARS-CoV-2/genética
6.
J Bacteriol ; 203(18): e0016221, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34228496

RESUMO

Acetic acid bacteria grow while producing acetic acid, resulting in acidification of the culture. Limited reports elucidate the effect of changes in intracellular pH on transcriptional factors. In the present study, the intracellular pH of Komagataeibacter europaeus was monitored with a pH-sensitive green fluorescent protein, showing that the intracellular pH decreased from 6.3 to 4.7 accompanied by acetic acid production during cell growth. The leucine-responsive regulatory protein of K. europaeus (KeLrp) was used as a model to examine pH-dependent effects, and its properties were compared with those of the Escherichia coli ortholog (EcLrp) at different pH levels. The DNA-binding activities of EcLrp and KeLrp with the target DNA (Ec-ilvI and Ke-ilvI) were examined by gel mobility shift assays under various pH conditions. EcLrp showed the highest affinity with the target at pH 8.0 (Kd [dissociation constant], 0.7 µM), decreasing to a minimum of 3.4 µM at pH 4.0. Conversely, KeLrp did not show significant differences in binding affinity between pH 4 and 7 (Kd, 1.0 to 1.5 µM), and the highest affinity was at pH 5.0 (Kd, 1.0 µM). Circular dichroism spectroscopy revealed that the α-helical content of KeLrp was the highest at pH 5.0 (49%) and was almost unchanged while being maintained at >45% over a range of pH levels examined, while that of EcLrp decreased from its maximum (49% at pH 7.0) to its minimum (36% at pH 4.0). These data indicate that KeLrp is stable and functions over a wide range of intracellular pH levels. IMPORTANCE Lrp is a highly conserved transcriptional regulator found in bacteria and archaea and regulates transcriptions of various genes. The intracellular pH of acetic acid bacteria (AAB) changes accompanied by acetic acid production during cell growth. The Lrp of AAB K. europaeus (KeLrp) was structurally stable over a wide range of pH and maintained DNA-binding activity even at low pH compared with Lrp from E. coli living in a neutral environment. An in vitro experiment showed DNA-binding activity of KeLrp to the target varied with changes in pH. In AAB, change of the intracellular pH during a cell growth would be an important trigger in controlling the activity of Lrp in vivo.


Assuntos
Ácido Acético/metabolismo , Acetobacteraceae/genética , Proteínas de Ligação a DNA/metabolismo , Proteína Reguladora de Resposta a Leucina/genética , Proteína Reguladora de Resposta a Leucina/metabolismo , Acetobacteraceae/crescimento & desenvolvimento , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Concentração de Íons de Hidrogênio , Proteína Reguladora de Resposta a Leucina/química , Ligação Proteica
7.
Amino Acids ; 52(2): 275-285, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31101997

RESUMO

Branched-chain polyamines (BCPAs) are unique polycations found in (hyper)thermophiles. Thermococcus kodakarensis grows optimally at 85 °C and produces the BCPA N4-bis(aminopropyl)spermidine by sequential addition of decarboxylated S-adenosylmethionine (dcSAM) aminopropyl groups to spermidine (SPD) by BCPA synthase A (BpsA). The T. kodakarensis bpsA deletion mutant (DBP1) did not grow at temperatures at or above 93 °C, and grew at 90 °C only after a long lag period following accumulation of excess cytoplasmic SPD. This suggests that BCPA plays an essential role in cell growth at higher temperatures and raises the possibility that BCPA is involved in controlling gene expression. To examine the effects of BCPA on transcription, the RNA polymerase (RNAP) core fraction was extracted from another bpsA deletion mutant, DBP4 (RNAPDBP4), which carried a His-tagged rpoL, and its enzymatic properties were compared with those of RNAP from wild-type (WT) cells (RNAPWT). LC-MS analysis revealed that nine ribosomal proteins were detected from RNAPWT but only one form RNAPDBP4. These results suggest that BCPA increases the linkage between RNAP and ribosomes to achieve efficient coupling of transcription and translation. Both RNAPs exhibited highest transcription activity in vitro at 80 °C, but the specific activity of RNAPDBP4 was lower than that of RNAPWT. Upon addition of SPD and BCPA, both increased the transcriptional activity of RNAPDBP4; however, elevation by BCPA was achieved at a tenfold lower concentration. Addition of BCPA also protected RNAPDBP4 against thermal inactivation at 90 °C. These results suggest that BCPA increases transcriptional activity in T. kodakarensis by stabilizing the RNAP complex at high temperatures.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Poliaminas/metabolismo , Thermococcus/enzimologia , Proteínas Arqueais/genética , RNA Polimerases Dirigidas por DNA/genética , Estabilidade Enzimática , Temperatura Alta , Poliaminas/química , Thermococcus/química , Thermococcus/genética , Thermococcus/metabolismo
8.
Amino Acids ; 52(2): 287-299, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31621031

RESUMO

Branched-chain polyamine (BCPA) synthase (BpsA), encoded by the bpsA gene, is responsible for the biosynthesis of BCPA in the hyperthermophilic archaeon Thermococcus kodakarensis, which produces N4-bis(aminopropyl)spermidine and spermidine. Here, next-generation DNA sequencing and liquid chromatography-mass spectrometry (LC-MS) were used to perform transcriptomic and proteomic analyses of a T. kodakarensis strain (DBP1) lacking bpsA. Subsequently, the contributions of BCPA to gene transcription (or transcript stabilization) and translation (or protein stabilization) were analyzed. Compared with those in the wild-type strain (KU216) cultivated at 90 °C, the transcript levels of 424 and 21 genes were up- and downregulated in the DBP1 strain, respectively. The expression levels of 12 frequently-used tRNAs were lower in DBP1 cells than KU216 cells, suggesting that BCPA affects translation efficiency in T. kodakarensis. LC-MS analyses of cells grown at 90 °C detected 50 proteins in KU216 cells only, 109 proteins in DBP1 cells only, and 499 proteins in both strains. Notably, the transcript levels of some genes did not correlate with those of the proteins. RNA-seq and RT-qPCR analyses of ten proteins that were detected in KU216 cells only, including three flagellin-related proteins (FlaB2-4) and cytosolic NiFe-hydrogenase subunit alpha (HyhL), revealed that the corresponding transcripts were expressed at higher levels in DBP1 cells than KU216 cells. Electron microscopy analyses showed that flagella formation was disrupted in DBP1 cells at 90 °C, and western blotting confirmed that HyhL expression was eliminated in the DBP1 strain. These results suggest that BCPA plays a regulatory role in gene expression in T. kodakarensis.


Assuntos
Poliaminas/metabolismo , Thermococcus/genética , Thermococcus/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Regulação da Expressão Gênica em Archaea , Temperatura Alta , Hidrogenase/genética , Hidrogenase/metabolismo , Poliaminas/química , Thermococcus/crescimento & desenvolvimento
9.
FEBS J ; 286(19): 3926-3940, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31162806

RESUMO

Branched-chain polyamine synthase (BpsA) catalyzes sequential aminopropyl transfer from the donor, decarboxylated S-adenosylmethionine (dcSAM), to the acceptor, linear-chain polyamine, resulting in the production of a quaternary-branched polyamine via tertiary branched polyamine intermediates. Here, we analyzed the catalytic properties and X-ray crystal structure of Tth-BpsA from Thermus thermophilus and compared them with those of Tk-BpsA from Thermococcus kodakarensis, which revealed differences in acceptor substrate specificity and C-terminal structure between these two enzymes. To investigate the role of the C-terminal flexible region in acceptor recognition, a region (QDEEATTY) in Tth-BpsA was replaced with that in Tk-BpsA (YDDEESSTT) to create chimeric Tth-BpsA C9, which showed a severe reduction in catalytic efficiency toward N4 -aminopropylnorspermidine, but not toward N4 -aminopropylspermidine, mimicking Tk-BpsA substrate specificity. Tth-BpsA C9 Tyr346 and Thr354 contributed to discrimination between tertiary branched-chain polyamine substrates, suggesting that the C-terminal region of BpsA recognizes acceptor substrates. Liquid chromatography-tandem mass spectrometry analysis on a Tk-BpsA reaction mixture with dcSAM revealed two aminopropyl groups bound to two of five aspartate/glutamate residues (Glu339 , Asp342 , Asp343 , Glu344 , and Glu345 ) in the C-terminal flexible region. Mutating each of these five amino acid residues to asparagine/glutamine resulted in a slight decrease in activity. The quadruple mutant D342N/D343N/E344Q/E345Q exhibited a severe reduction in catalytic efficiency, suggesting that these aspartate/glutamate residues function to receive aminopropyl chains. In addition, the X-ray crystal structure of the Tk-BpsA ternary complex bound to N4 -bis(aminopropyl)spermidine revealed that Asp126 and Glu259 interacted with the aminopropyl moiety in N4 -aminopropylspermidine.


Assuntos
Poliaminas/metabolismo , Espermidina Sintase/metabolismo , Catálise , Cromatografia Líquida , Espermidina Sintase/química , Especificidade por Substrato , Espectrometria de Massas em Tandem , Thermococcus/enzimologia , Thermus thermophilus/enzimologia
10.
Chemphyschem ; 19(18): 2299-2304, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-29931720

RESUMO

A pentavalent branched-chain polyamine, N4 -bis(aminopropyl)spermidine 3(3)(3)4, is a unique polycation found in the hyperthermophilic archaeon Thermococcus kodakarensis, which grows at temperatures between 60 and 100 °C. We studied the effects of this branched-chain polyamine on DNA structure at different temperatures up to 80 °C. Atomic force microscopic observation revealed that 3(3)(3)4 induces a mesh-like structure on a large DNA (166 kbp) at 24 °C. With an increase in temperature, DNA molecules tend to unwind, and multiple nano-loops with a diameter of 10-50 nm are generated along the DNA strand at 80 °C. These results were compared to those obtained with linear-chain polyamines, homocaldopentamine 3334 and spermidine, the former of which is a structural isomer of 3(3)(3)4. These specific effects are expected to neatly concern with its role on high-temperature preference in hyperthermophiles.


Assuntos
DNA/química , Espermidina/análogos & derivados , Espermidina/química , Animais , Bacteriófago T4/genética , Bovinos , DNA/genética , Genoma , Temperatura Alta , Microscopia de Força Atômica , Conformação de Ácido Nucleico , Poliaminas/química , Espermidina/síntese química , Thermococcus/química
11.
PLoS One ; 13(3): e0193595, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29494707

RESUMO

BACKGROUND: Polyamines have various biological functions including marked effects on the structure and function of genomic DNA molecules. Changes in the higher-order structure of DNA caused by polyamines are expected to be closely related to genetic activity. To clarify this issue, we examined the relationship between gene expression and the higher-order structure of DNA under different polyamine concentrations. PRINCIPAL FINDINGS: We studied the effects of polyamines, spermidine SPD(3+) and spermine SP(4+), on gene expression by a luciferase assay. The results showed that gene expression is increased by ca. 5-fold by the addition of SPD(3+) at 0.3 mM, whereas it is completely inhibited above 2 mM. Similarly, with SP(4+), gene expression is maximized at 0.08 mM and completely inhibited above 0.6 mM. We also performed atomic force microscopy (AFM) observations on DNA under different polyamine concentrations. AFM revealed that a flower-like conformation is generated at polyamine concentrations associated with maximum expression as measured by the luciferase assay. On the other hand, DNA molecules exhibit a folded compact conformation at polyamine concentrations associated with the complete inhibition of expression. Based on these results, we discuss the plausible mechanism of the opposite effect, i.e., enhancement and inhibition, of polyamines on gene expression. CONCLUSION AND SIGNIFICANCE: It was found that polyamines exert opposite effect, enhancement and inhibition, on gene expression depending on their concentrations. Such an opposite effect is argued in relation to the conformational change of DNA: enhancement is due to the parallel ordering of DNA segments that is accompanied by a decrease in the negative charge of double-stranded DNA, and inhibition is caused by the compaction of DNA into a tightly packed state with almost perfect charge-neutralization.


Assuntos
DNA/química , Regulação para Baixo , Poliaminas/farmacologia , Regulação para Cima , DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas In Vitro , Microscopia de Força Atômica , Modelos Moleculares , Conformação de Ácido Nucleico/efeitos dos fármacos , Espermidina/farmacologia , Espermina/farmacologia
12.
Methods Mol Biol ; 1694: 81-94, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29080158

RESUMO

Thermophiles are organisms that grow optimally at temperatures higher than 55 °C. They contain two types of unusual longer/branched-chain polyamines in addition to common polyamines such as spermidine and putrescine. These unusual polyamines contribute to the survival of hyperthermophiles at high temperatures. Recently, the novel aminopropyltransferase BpsA was found to be responsible for the biosynthesis of branched-chain polyamines in the hyperthermophilic archaeon Thermococcus kodakarensis, which contains N 4-bis(aminopropyl)spermidine as the major polyamine. This compound is synthesized by the sequential addition of decarboxylated S-adenosylmethionine (dcSAM) aminopropyl groups to spermidine via the bifunctional catalytic action of BpsA. In this chapter, methods for the extraction and identification of branched-chain polyamines are presented, along with methods for the production and characterization of recombinant T. kodakarensis BpsA as a model aminopropyltransferase.


Assuntos
Poliaminas/análise , Thermococcus/química , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Genes Arqueais , Estrutura Molecular , Filogenia , Poliaminas/química , Espermidina Sintase/metabolismo , Thermococcus/classificação , Thermococcus/genética , Thermococcus/metabolismo
13.
Inorg Chem ; 56(2): 802-811, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-28045514

RESUMO

Derivatives of the highly antitumor-active compound [{cis-Pt(NH3)2}2(µ-OH)(µ-tetrazolato-N2,N3)]2+ (5-H-Y), which is a tetrazolato-bridged dinuclear platinum(II) complex, were prepared by substituting a linear alkyl chain moiety at C5 of the tetrazolate ring. The general formula for the derivatives is [{cis-Pt(NH3)2}2(µ-OH)(µ-5-R-tetrazolato-N2,N3)]2+, where R is (CH2)nCH3 and n = 0 to 8 (complexes 1-9). The cytotoxicity of complexes 1-4 in NCI-H460 human non-small-cell lung cancer cells decreased with increasing alkyl chain length, and those of complexes 5-9 increased with increasing alkyl chain length. That is, the in vitro cytotoxicity of complexes 1-9 was found to have a U-shaped association with alkyl chain length. This U-shaped association is attributable to the degree of intracellular accumulation. Although circular dichroism spectroscopic measurement indicated that complexes 1-9 induced comparable conformational changes in the secondary structure of DNA, the tetrazolato-bridged complexes induced different degrees of DNA compaction as revealed by a single DNA measurement with fluorescence microsopy, which also had a U-shaped association with alkyl chain length that matched the association observed for cytotoxicity. Complexes 7-9, which had alkyl chains long enough to confer surfactant-like properties to the complex, induced DNA compaction 20 or 1000 times more efficiently than 5-H-Y or spermidine. A single DNA measurement with transmission electron microscopy revealed that complex 8 formed large spherical self-assembled structures that induced DNA compaction with extremely high efficiency. This result suggests that these structures may play a role in the DNA compaction that was induced by the complexes with the longer alkyl chains. The derivatization with a linear alkyl chain produced a series of complexes with unique cellular accumulation and DNA conformational change profiles and a potentially useful means of developing next-generation platinum-based anticancer drugs. In addition, the markedly high ability of these complexes to induce DNA compaction and their high intracellular accumulation emphasized the difference in mechanism of action from platinum-based anticancer drugs.


Assuntos
Antineoplásicos/farmacologia , DNA/química , Compostos Organoplatínicos/farmacologia , Tetrazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Cisplatino/farmacologia , Humanos , Estrutura Molecular , Conformação de Ácido Nucleico , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/química , Espermidina/farmacologia , Relação Estrutura-Atividade , Tensoativos/síntese química , Tensoativos/química , Tensoativos/farmacologia , Tetrazóis/síntese química , Tetrazóis/química
14.
Extremophiles ; 21(1): 27-39, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27738851

RESUMO

The maturation of [NiFe]-hydrogenases requires a number of accessory proteins, which include hydrogenase-specific endopeptidases. The endopeptidases carry out the final cleavage reaction of the C-terminal regions of [NiFe]-hydrogenase large subunit precursors. The hyperthermophilic archaeon Thermococcus kodakarensis harbors two [NiFe]-hydrogenases, a cytoplasmic Hyh and a membrane-bound Mbh, along with two putative hydrogenase-specific endopeptidase genes. In this study, we carried out a genetic examination on the two endopeptidase genes, TK2004 and TK2066. Disruption of TK2004 resulted in a strain that could not grow under conditions requiring hydrogen evolution. The Mbh large subunit precursor (pre-MbhL) in this strain was not processed at all whereas Hyh cleavage was not affected. On the other hand, disruption of TK2066 did not affect the growth of T. kodakarensis under the conditions examined. Cleavage of the Hyh large subunit precursor (pre-HyhL) was impaired, but could be observed to some extent. In a strain lacking both TK2004 and TK2066, cleavage of pre-HyhL could not be observed. Our results indicate that pre-MbhL cleavage is carried out solely by the endopeptidase encoded by TK2004. Pre-HyhL cleavage is mainly carried out by TK2066, but TK2004 can also play a minor role in this cleavage.


Assuntos
Proteínas Arqueais/genética , Endopeptidases/genética , Hidrogenase/metabolismo , Processamento de Proteína Pós-Traducional , Thermococcus/genética , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Endopeptidases/metabolismo , Hidrogenase/química , Hidrogenase/genética , Multimerização Proteica , Proteólise , Thermococcus/enzimologia
15.
J Chem Phys ; 145(23): 235103, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-28010109

RESUMO

We studied the effect of branched-chain polyamines on the folding transition of genome-sized DNA molecules in aqueous solution by the use of single-molecule observation with fluorescence microcopy. Detailed morphological features of polyamine/DNA complexes were characterized by atomic force microscopy (AFM). The AFM observations indicated that branched-chain polyamines tend to induce a characteristic change in the higher-order structure of DNA by forming bridges or crosslinks between the segments of a DNA molecule. In contrast, natural linear-chain polyamines cause a parallel alignment between DNA segments. Circular dichroism measurements revealed that branched-chain polyamines induce the A-form in the secondary structure of DNA, while linear-chain polyamines have only a minimum effect. This large difference in the effects of branched- and linear-chain polyamines is discussed in relation to the difference in the manner of binding of these polyamines to negatively charged double-stranded DNA.


Assuntos
Reagentes de Ligações Cruzadas/química , DNA Viral/química , DNA/química , Poliaminas/química , Animais , Bacteriófago T4 , Bovinos , Dicroísmo Circular , Microscopia de Força Atômica , Estrutura Molecular
16.
Proteins ; 84(10): 1339-46, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27273261

RESUMO

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) plays a central role in carbon dioxide fixation on our planet. Rubisco from a hyperthermophilic archaeon Thermococcus kodakarensis (Tk-Rubisco) shows approximately twenty times the activity of spinach Rubisco at high temperature, but only one-eighth the activity at ambient temperature. We have tried to improve the activity of Tk-Rubisco at ambient temperature, and have successfully constructed several mutants which showed higher activities than the wild-type enzyme both in vitro and in vivo. Here, we designed new Tk-Rubisco mutants based on its three-dimensional structure and a sequence comparison of thermophilic and mesophilic plant Rubiscos. Four mutations were introduced to generate new mutants based on this strategy, and one of the four mutants, T289D, showed significantly improved activity compared to that of the wild-type enzyme. The crystal structure of the Tk-Rubisco T289D mutant suggested that the increase in activity was due to mechanisms distinct from those involved in the improvement in activity of Tk-Rubisco SP8, a mutant protein previously reported to show the highest activity at ambient temperature. Combining the mutations of T289D and SP8 successfully generated a mutant protein (SP8-T289D) with the highest activity to date both in vitro and in vivo. The improvement was particularly pronounced for the in vivo activity of SP8-T289D when introduced into the mesophilic, photosynthetic bacterium Rhodopseudomonas palustris, which resulted in a strain with nearly two-fold higher specific growth rates compared to that of a strain harboring the wild-type enzyme at ambient temperature. Proteins 2016; 84:1339-1346. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas Arqueais/química , Proteínas de Bactérias/química , Mutação , Proteínas de Plantas/química , Ribulose-Bifosfato Carboxilase/química , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Cinética , Modelos Moleculares , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Engenharia de Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rodopseudomonas/química , Rodopseudomonas/enzimologia , Rodopseudomonas/genética , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Spinacia oleracea/química , Spinacia oleracea/enzimologia , Spinacia oleracea/genética , Relação Estrutura-Atividade , Thermococcus/química , Thermococcus/enzimologia , Thermococcus/genética
17.
J Biosci Bioeng ; 120(1): 58-61, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25533380

RESUMO

Lysobacter oligotrophicus strain 107-E2(T) isolated from Antarctica produces dark-brown colored water-soluble pigment, in addition to hydrolases and lytic enzymes. The production of pigment is a common characteristic among members of the genus Lysobacter, but the identity of the pigments has been unknown. In this study, we identified the pigment from L. oligotrophicus as melanin pigment (Lo-melanin) by chemical and spectroscopic analyses. Although melanin is generally insoluble in both aqueous and organic solvents, the results in this study revealed that Lo-melanin shows water-solubility by means of the added polysaccharide chain. Lo-melanin production of L. oligotrophicus was increased by ultraviolet (UV) exposure, and survival rate of Escherichia coli under UV-irradiated condition was increased by the addition of Lo-melanin to the medium.


Assuntos
Lysobacter/química , Melaninas/química , Água/química , Escherichia coli/citologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/efeitos da radiação , Lysobacter/enzimologia , Lysobacter/efeitos da radiação , Melaninas/biossíntese , Melaninas/isolamento & purificação , Viabilidade Microbiana , Solubilidade , Solventes/química , Raios Ultravioleta
18.
J Bacteriol ; 196(10): 1866-76, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24610711

RESUMO

Longer- and/or branched-chain polyamines are unique polycations found in thermophiles. N(4)-aminopropylspermine is considered a major polyamine in Thermococcus kodakarensis. To determine whether a quaternary branched penta-amine, N(4)-bis(aminopropyl)spermidine, an isomer of N(4)-aminopropylspermine, was also present, acid-extracted cytoplasmic polyamines were analyzed by high-pressure liquid chromatography, gas chromatography (HPLC), and gas chromatography-mass spectrometry. N(4)-bis(aminopropyl)spermidine was an abundant cytoplasmic polyamine in this species. To identify the enzyme that catalyzes N(4)-bis(aminopropyl)spermidine synthesis, the active fraction was concentrated from the cytoplasm and analyzed by linear ion trap-time of flight mass spectrometry with an electrospray ionization instrument after analysis by the MASCOT database. TK0545, TK0548, TK0967, and TK1691 were identified as candidate enzymes, and the corresponding genes were individually cloned and expressed in Escherichia coli. Recombinant forms were purified, and their N(4)-bis(aminopropyl)spermidine synthesis activity was measured. Of the four candidates, TK1691 (BpsA) was found to synthesize N(4)-bis(aminopropyl)spermidine from spermidine via N(4)-aminopropylspermidine. Compared to the wild type, the bpsA-disrupted strain DBP1 grew at 85°C with a slightly longer lag phase but was unable to grow at 93°C. HPLC analysis showed that both N(4)-aminopropylspermidine and N(4)-bis(aminopropyl)spermidine were absent from the DBP1 strain grown at 85°C, demonstrating that the branched-chain polyamine synthesized by BpsA is important for cell growth at 93°C. Sequence comparison to orthologs from various microorganisms indicated that BpsA differed from other known aminopropyltransferases that produce spermidine and spermine. BpsA orthologs were found only in thermophiles, both in archaea and bacteria, but were absent from mesophiles. These findings indicate that BpsA is a novel aminopropyltransferase essential for the synthesis of branched-chain polyamines, enabling thermophiles to grow in high-temperature environments.


Assuntos
Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Poliaminas/metabolismo , Thermococcus/enzimologia , Proteínas de Bactérias , Citoplasma/química , Citoplasma/metabolismo
19.
Int J Syst Evol Microbiol ; 64(Pt 6): 2034-2040, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24651306

RESUMO

A Gram-stain-negative, non-spore-forming, aerobic, oligotrophic bacterium (strain 262-7(T)) was isolated from a crack of white rock collected in the Skallen region of Antarctica. Strain 262-7(T) grew at temperatures between -4 and 30 °C, with optimal growth at 25 °C. The pH range for growth was between pH 6.0 and 9.0, with optimal growth at approximately pH 7.0. The NaCl concentration range allowing growth was between 0.0 and 1.0%, with an optimum of 0.5%. Strain 262-7(T) showed an unprecedented range of morphological diversity in response to growth conditions. Cells grown in liquid medium were circular or ovoid with smooth surfaces in the lag phase. In the exponential phase, ovoid cells with short projections were observed. Cells in the stationary phase possessed long tentacle-like projections intertwined intricately. By contrast, cells grown on agar plate medium or in liquid media containing organic compounds at low concentration exhibited short- and long-rod-shaped morphology. These projections and morphological variations clearly differ from those of previously described bacteria. Ubiquinone 10 was the major respiratory quinone. The major fatty acids were C(17 : 1)ω6c (28.2%), C(16 : 1)ω7c (22.6%), C(18 : 1)ω7c (12.9%) and C(15 : 0) 2-OH (12.3%). The G+C content of genomic DNA was 68.0 mol%. Carotenoids were detected from the cells. Comparative analyses of 16S rRNA gene sequences indicated that strain 262-7(T) belongs to the family Sphingomonadaceae, and that 262-7(T) should be distinguished from known genera in the family Sphingomonadaceae. According to the phylogenetic position, physiological characteristics and unique morphology variations, strain 262-7(T) should be classified as a representative of a novel genus of the family Sphingomonadaceae. Here, a novel genus and species with the name Polymorphobacter multimanifer gen. nov., sp. nov. is proposed (type strain 262-7(T) = JCM 18140(T) = ATCC BAA-2413(T)). The novel species was named after its morphological diversity and formation of unique projections.


Assuntos
Filogenia , Sphingomonadaceae/classificação , Regiões Antárticas , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Glicolipídeos/química , Dados de Sequência Molecular , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sphingomonadaceae/genética , Sphingomonadaceae/isolamento & purificação , Ubiquinona/química
20.
Int J Syst Evol Microbiol ; 63(Pt 9): 3313-3318, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23475347

RESUMO

A Gram-stain-negative, non-spore-forming, rod-shaped, aerobic bacterium (strain 107-E2(T)) was isolated from freshwater samples containing microbial mats collected at a lake in Skarvsnes, Antarctica (temporary lake name, Lake Tanago Ike). Strain 107-E2(T) grew between 5 and 25 °C, with an optimum of 23 °C. Moreover, colony formation was observed on agar media even at -5 °C. The pH range for growth was between 6.0 and 9.0, with an optimum of pH 7.0-8.0. The range of NaCl concentration for growth was between 0.0 and 0.5% (w/v), with an optimum of 0.0%. No growth was observed in media containing organic compounds at high concentrations, which indicated that strain 107-E2(T) was an oligotroph. In the late stationary phase, strain 107-E2(T) produced a dark brown water-soluble pigment. Esterase, amylase and protease production was observed. Antimicrobial-lytic activities for Gram-negative bacteria and yeast were observed. Ubiquinone-8 was the major respiratory quinone. The major fatty acids were iso-C15:0, iso-C(17:1)ω9c and iso-C(15:1) at 5. The G+C content of genomic DNA was 66.1 mol%. Analysis of the 16S rRNA gene sequences revealed that strain 107-E2(T) belonged to the genus Lysobacter, and low DNA-DNA relatedness values with closely related species distinguished strain 107-E2(T) from recognized species of the genus Lysobacter. The phylogenetic situation and physiological characteristics indicated that strain 107-E2(T) should be classified as a representative of a novel species of the genus Lysobacter, for which the name Lysobacter oligotrophicus sp. nov. is proposed. The type strain is 107-E2(T) ( =JCM 18257(T) =ATCC BAA-2438(T)).


Assuntos
Lagos/microbiologia , Lysobacter/classificação , Filogenia , Regiões Antárticas , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/análise , Água Doce/microbiologia , Lysobacter/genética , Lysobacter/isolamento & purificação , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...