Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Yakugaku Zasshi ; 142(11): 1255-1265, 2022.
Artigo em Japonês | MEDLINE | ID: mdl-36328452

RESUMO

The globalization of drug trade has led to the increased production of falsified medicines. In addition, poor medication adherence increases the costs of healthcare. The need to manage medication has given rise to marketing of highly functional networked digital medicine. Therefore, a growing need has emerged to ensure the traceability of pharmaceutical products from shipment to patient distribution. Microtaggant technologies that can encode individual numbers on pharmaceutical products are expected to serve achieving this goal. Taggants are a class of materials that can be applied to an object to make it identifiable, like barcodes and holograms. Since the smaller size of microtaggant make it invisible to naked eyes, it is more difficult to reverse-engineer than conventional taggants. The U.S. Food and Drug Administration (FDA) has established guidelines for the use of microtaggants. Many studies have explored the use of various analytical technologies and materials as the microtaggants. However, the advantages and disadvantages of each method have not been established yet. In this review, recent research on the use of microtaggants for anti-counterfeiting is summarized and compared to current anti-counterfeiting technologies with spectrographic methods, distribution management systems with barcodes, and medication management systems with sensor devices. We also discuss the microtaggants implementation costs and security level.


Assuntos
Medicamentos Falsificados , Conduta do Tratamento Medicamentoso , Humanos , Composição de Medicamentos , Preparações Farmacêuticas , Tecnologia
2.
Int J Pharm ; 624: 121980, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35792229

RESUMO

Microtaggant technologies can encode individual numbers on coating tablet to authenticate pharmaceutical products and, therefore, combat the global spread of falsified medicine. In this study, a novel microtaggant, stealth nanobeacon (NB), with surface-enhanced Raman scattering (SERS) activity was applied to various coating tablets and its physical stability was evaluated. The NBs were composed of a reporter molecule (AH, adenine hydrochloride) and prepared with different sizes of gold nanoparticles (AuNPs). The NBs were directly deposited on the surface of various model coatings (e.g., hydroxypropyl cellulose, hydroxypropyl methyl cellulose, Eudragit® RS30D, ethyl cellulose). To investigate physical stability of the NB on the coating tablets, SERS spectra of the NB after friability test and acceleration test (store at 75% RH, 40 °C) were evaluated using a portable Raman spectrometer. After the friability test, there was no significant decrease in the peak intensity of the SERS signal (PH) for authentication in all samples. In the acceleration test, the SERS signals of the samples were attenuated, but sufficient SERS signal intensity (PH > 70) was maintained in the seven types of coating for authentication. These results demonstrate that the microtaggant NB has the potential to be used for a wide range of coating tablets.


Assuntos
Nanopartículas Metálicas , Análise Espectral Raman , Ouro , Adesão à Medicação , Análise Espectral Raman/métodos , Comprimidos
3.
Sci Rep ; 12(1): 985, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35046469

RESUMO

Counterfeiting of financial cards and marketable securities is a major social problem globally. Electronic identification and image recognition are common anti-counterfeiting techniques, yet they can be overcome by understanding the corresponding algorithms and analysis methods. The present work describes a physically unclonable functions taggant, in an aqueous-soluble ink, based on surface-enhanced Raman scattering of discrete self-assemblies of Au nanoparticles. Using this stealth nanobeacon, we detected a fingerprint-type Raman spectroscopy signal that we clearly identified even on a business card with a pigment mask such as copper-phthalocyanine printed on it. Accordingly, we have overcome the reverse engineering problem that is otherwise inherent to analogous anti-counterfeiting techniques. One can readily tailor the ink to various information needs and application requirements. Our stealth nanobeacon printing will be particularly useful for steganography and provide a sensitive fingerprint for anti-counterfeiting.

4.
Biomed Res Int ; 2020: 1281645, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33204681

RESUMO

Cetuximab, an epidermal growth factor receptor inhibitor (EI), is currently the only targeted molecular therapy used in combination with radiotherapy for head and neck squamous cell carcinoma (HNSCC). Gold nanoparticles (AuNPs) are expected to enhance radiotherapy effects in cancers. To investigate whether AuNPs combined with AG1478, an EI, enhanced irradiation effects on HNSCC cells, we first examined AG1478 adsorption on AuNP surfaces, using surface-enhanced Raman scattering, which indicated an adsorption equilibrium of AG1478 to AuNPs. We then used transmission electron microscopy to find internalization rates of AuNP alone and AuNP+AG1478; we found that intracellular uptake of AuNP alone and AuNP+AG1478 did not significantly differ. We compared cell numbers, proliferation, apoptosis, and migration between control cells and those treated with or without 60 nm AuNP (1.0 nM), AG1478 (0.5 µM), and irradiation (4 Gy). We found that AuNP+AG1478 inhibited proliferation more than AG1478 alone; the combination of irradiation+AuNP+AG1478 significantly reduced total cell numbers compared with the combination of irradiation+AuNP; AuNP+AG1478 increased apoptotic reaction to irradiation; the combinations of AuNP+AG1478 and irradiation+AuNP induced more apoptosis than AG1478+irradiation. Whereas AuNP+AG1478 enhanced cytotoxicity in human HNSCC cells by inhibiting proliferation, irradiation+AuNP enhanced cytotoxicity by inducing apoptosis.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/radioterapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Antineoplásicos Imunológicos/administração & dosagem , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/imunologia , Ouro/química , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Microscopia Eletrônica de Transmissão , Quinazolinas/farmacologia , Análise Espectral Raman , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Tirfostinas/farmacologia
5.
J Synchrotron Radiat ; 27(Pt 4): 1008-1014, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33566010

RESUMO

X-ray-radiolysis-induced photochemical reaction of a liquid solution enables the direct synthesis and immobilization of nano/micro-scale particles and their aggregates onto a desired area. As is well known, the synthesis, growth and aggregation are dependent on the pH, additives and X-ray irradiation conditions. In this study, it was found that the topography and composition of synthesized particles are also dependent on the types of substrate dipped in an aqueous solution of Cu(COOCH3)2 in the X-ray-radiolysis-induced photochemical reaction. These results are attributed to the fact that a secondary electron induced by the X-ray irradiation, surface or interface on which the particles are nucleated and grown influences the particle shape and composition. This study will shed light on understanding a novel photochemical reaction route induced under X-ray irradiation. The development of this process using the X-ray-radiolysis-induced photochemical reaction in aqueous liquids enables us to achieve the rapid and easy operation of the synthesis, growth and immobilization of special nano/micro-scale complex materials or multifunctional composites.

6.
J Synchrotron Radiat ; 26(Pt 6): 1986-1995, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31721744

RESUMO

Synthesis and immobilization of caltrop cupric particles onto a Si substrate using X-ray radiolysis directly from a liquid solution of Cu(COOCH3)2 is demonstrated. Caltrop cupric oxide particles are formed in the X-ray radiolysis of aqueous solutions of Cu(COOCH3)2, which also contain methanol, ethanol, 2-propanol or 1-propanol as ^\bulletOH scavenger. The blade lengths of the caltrop particles are dependent on the alcohol chain length. In particular, it was found that an alkyl alcohol whose chain length is longer than four is unable to synthesize any particles in aqueous solutions of Cu(COOCH3)2 in X-ray radiolysis. These results are attributed to the alkyl alcohol chain length influencing the rate of reaction of radicals and determines the solvable ratio of its alcohol into water. In addition, it was found that the synthesized particle geometric structure and composition can also be controlled by the pH of the aqueous solution in the X-ray radiolysis. This study may open a door to understanding and investigating a novel photochemical reaction route induced under X-ray irradiation. The development of the X-ray radiolysis process enables us to achieve the rapid and easy process of synthesis and immobilization of higher-order nano/microstructure consisting of various materials.

7.
Analyst ; 144(23): 6928-6935, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31661540

RESUMO

Synthetic cannabinoids (SCs) are a major category of new psychoactive substances that are frequently distributed after addition to plants. To date, various SCs with small differences in their chemical structures have prevailed in the illegal drug market. Thus, the development of a method for rapid detection with high discrimination capability is critically important for the forensic field. Vibrational spectroscopy is a possible analytical technique for this purpose because it can sensitively reflect differences among chemical structures. In this study, we applied surface-enhanced Raman scattering (SERS) with gold nanoparticle co-aggregation in a wet system to plant samples containing SCs. The experimental protocol used was simple and involved only mixing of the sample with several other solutions. It was possible to detect SERS spectra from various stock solutions of SCs by this method. The method was then applied to street samples containing SCs. Some of the plant samples containing SCs did not produce significant SERS signals even though stock solutions of the same SCs did produce SERS spectra. We investigated the reason for this discrepancy and speculated that the solubility in aqueous solutions was a factor determining whether a significant SERS signal could be detected or not. According to this hypothesis, minimal sample pre-treatment methods were applied. This allowed for the detection of SERS spectra from the examined plant samples. The developed approach is a powerful method for screening analysis of SCs in plant fragments.

8.
Analyst ; 144(6): 2158-2165, 2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30747180

RESUMO

Sensitive detection of drugs using a method with high qualification capability is important for forensic drug analysis. Vibrational spectroscopy is a powerful screening technique because it can provide detailed structural information of the compounds included in samples with simple experimental protocols. Among various spectroscopic techniques, surface enhanced Raman scattering (SERS) spectroscopy has attracted enormous attention owing to its ultra-high sensitivity. In this study, we developed a method for rapid detection of hypnotics using SERS with gold nanoparticle co-aggregation in a wet system. The developed method required a simple analytical protocol. This enabled rapid analysis with high stability and repeatability. We analyzed various hypnotics (19 types including benzodiazepines and nonbenzodiazepines) to investigate the structure-spectrum relationship. As a proof of concept for application to real crime samples, simulated spiked beverages containing one hypnotic (etizolam, flunitrazepam, zolpidem, or zopiclone) were analyzed. Diluting the beverage samples decreased the matrix effect and allowed for detection of these hypnotics. Except for flunitrazepam, strong signals were observed for all hypnotics, and the estimated lower limit of detection was 50 ppm in apple drink. The developed approach is a rapid method for screening analysis of hypnotics with low sample requirements.

9.
J Synchrotron Radiat ; 24(Pt 3): 653-660, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28452757

RESUMO

X-ray radiolysis of a Cu(CH3COO)2 solution was observed to produce caltrop-shaped particles of cupric oxide (CuO, Cu2O), which were characterized using high-resolution scanning electron microscopy and micro-Raman spectrometry. X-ray irradiation from a synchrotron source drove the room-temperature synthesis of submicrometer- and micrometer-scale cupric oxide caltrop particles from an aqueous Cu(CH3COO)2 solution spiked with ethanol. The size of the caltrop particles depended on the ratio of ethanol in the stock solution and the surface of the substrate. The results indicated that there were several synthetic routes to obtain caltrop particles, each associated with electron donation. The technique of X-ray irradiation enables the rapid synthesis of caltrop cupric oxide particles compared with conventional synthetic methods.

10.
Nanotechnology ; 19(26): 265304, 2008 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-21828680

RESUMO

Using a dynamic oblique angle deposition technique, we demonstrate the direct formation of Ag nanorods with quasi-parallel major axes on a template layer of oxide having a strongly anisotropic surface morphology. The optical properties of the nanorods are tuned by varying the deposition conditions without any pre- or post-treatment, and the resulting Ag nanorod arrays exhibit high surface-enhanced Raman scattering (SERS) activity. In addition to high macroscopic uniformity over a large area, our nanorod arrays contain a high density of isolated nanorods. Using the optimum Ag nanorod arrays, the SERS imaging of the microdroplets of a rhodamine 6G solution is successfully demonstrated. The space resolution of the imaging is of the order of at least a few µm. These features are suitable for the SERS imaging of biomaterials.

11.
Anal Sci ; 23(7): 829-33, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17625325

RESUMO

We have demonstrated surface-enhanced Raman spectroscopy (SERS) on arrays of Au nanorods aligned in line by a dynamic oblique deposition technique. For light polarized along the major axes of the nanorods, the plasma resonance of the Au nanorods has been tuned to a wavelength suitable for Raman spectroscopy. Raman scattering on the discrete nanorods is significantly enhanced compared with that on semicontinuous Au films. Since the preparation process is physically bottom-up, it is robust in its selection of the materials and is useful for providing SERS sensors at low cost.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...