Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 533(4): 971-975, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33008602

RESUMO

Previous studies have reported that continuous infusion with substance P (SP) into rat dorsal striatum ameliorated both mechanical allodynia in both formalin-evoked transient inflammatory pain and neuropathic pain models. However, a role of striatal SP in persistent inflammatory pain has not been demonstrated. The current study examined the effect of continuous infusion of SP into the rat dorsal striatum by reverse microdialysis on persistent inflammatory pain induced by complete Freund's adjuvant (CFA). Intraplantar injection of CFA evoked both mechanical allodynia and paw edema 3 and 7 days post-injection. The continuous infusion of SP ameliorated the CFA-evoked mechanical allodynia, but not paw edema, 3 days after the CFA injection. This antinociceptive effect of SP was partially inhibited by co-infusion with the neurokinin-1 (NK1) receptor antagonist CP96345. Conversely, at 7 days both CFA-evoked mechanical allodynia and paw edema were not affected by SP treatment. To clarify why the effect of SP treatment on CFA-induced pain changed, we evaluated NK1 receptor protein levels at both time points. The NK1 receptor protein level was decreased at 7, but not 3, days post CFA injection. These data suggest that persistent inflammatory pain can downregulate the striatal NK1 receptor. The current study demonstrates that striatal SP-NK1 receptor pathway can exert antinociceptive effect only on the third days of inflammatory pain phase defined as an acute but not the 7 days defined as a subacute.


Assuntos
Inflamação/fisiopatologia , Dor/tratamento farmacológico , Substância P/administração & dosagem , Doença Aguda , Analgésicos/administração & dosagem , Analgésicos/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Edema/tratamento farmacológico , Adjuvante de Freund/antagonistas & inibidores , Adjuvante de Freund/toxicidade , Hiperalgesia/tratamento farmacológico , Hiperalgesia/fisiopatologia , Inflamação/etiologia , Infusões Parenterais , Masculino , Dor/etiologia , Dor/fisiopatologia , Limiar da Dor/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores da Neurocinina-1/metabolismo , Substância P/metabolismo
2.
Behav Brain Res ; 391: 112714, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32461131

RESUMO

Previous studies have demonstrated that continuous substance P (SP) infusion into the rat striatum attenuated hind paw formalin-induced nociceptive behaviors and mechanical hypersensitivity via a neurokinin-1 (NK1) receptor dependent mechanism. However, whether there is a role of striatal infusion of SP on chronic, neuropathic pain has yet to be demonstrated. The present study investigated the effect of continuous SP infusion into the rat striatum using a reverse microdialysis method is antinociceptive in a rat model of chronic, mononeuropathic pain. Two weeks after partial sciatic nerve injury, the ipsilateral hind paw demonstrated mechanical hypersensitivity. Infusion of SP (0.2, 0.4, or 0.8 µg/mL, 1 µL/min) for 120 min into the contralateral striatum dose-dependently relieved mechanical hypersensitivity. The antinociceptive effect of SP infusion was inhibited by co-infusion with the NK1 receptor antagonist CP96345 (10 µM). Neither ipsilateral continuous infusion nor acute microinjection of SP (10 ng) into the contralateral striatum was antinociceptive. A role of striatal muscarinic cholinergic neurons is suggested since co-infusion of SP with atropine (10 µM), but not the nicotinic receptor mecamylamine (10 µM), blocked antinociception. The current study suggests that activation of striatal muscarinic receptors through NK1 receptors could be a novel approach to managing chronic pain.


Assuntos
Corpo Estriado/efeitos dos fármacos , Nociceptividade/efeitos dos fármacos , Substância P/farmacologia , Animais , Dor Crônica/tratamento farmacológico , Corpo Estriado/metabolismo , Hiperalgesia/fisiopatologia , Masculino , Neuralgia/tratamento farmacológico , Medição da Dor/métodos , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Ratos , Ratos Wistar , Receptores Muscarínicos/metabolismo , Receptores da Neurocinina-1/metabolismo , Nervo Isquiático/lesões , Neuropatia Ciática/tratamento farmacológico , Substância P/metabolismo
3.
J Neurochem ; 131(6): 755-66, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25175638

RESUMO

Intraplantar injection of 0.4% formalin into the rat hind paw leads to a biphasic nociceptive response; an 'acute' phase (0-15 min) and 'tonic' phase (16-120 min), which is accompanied by significant phosphorylation of extracellular signal-regulated kinase (ERK)1/2 in the contralateral striatum at 120 min post-formalin injection. To uncover a possible relationship between the slow-onset substance P (SP) release and increased ERK1/2 phosphorylation in the striatum, continuous infusion of SP into the striatum by reverse microdialysis (0.4 µg/mL in microdialysis fiber, 1 µL/min) was performed to mimic volume neurotransmission of SP. Continuous infusion for 3 h of SP reduced the duration of 'tonic' phase nociception, and this SP effect was mediated by neurokinin 1 (NK1) receptors since pre-treatment with NK1 receptor antagonist CP96345 (10 µM) blocked the effect of SP infusion. However, formalin-induced 'tonic' phase nociception was significantly prolonged following acute injection of the MAP/ERK kinase 1/2 inhibitor PD0325901 (100 pmol) by microinjection. The coinfusion of SP and PD0325901 significantly increased the 'tonic' phase of nociception. These data demonstrate that volume transmission of striatal SP triggered by peripheral nociceptive stimulation does not lead to pain facilitation but a significant decrease of tonic nociception by the activation of the SP-NK1 receptor-ERK1/2 system. Noxious stimulation induces a slow-onset substance P (SP) release as a volume transmitter, activating extra-synaptic NK1 receptors, and evokes phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. The SP-NK1-ERK1/2 system in the striatum decreases tonic nociception.


Assuntos
Comportamento Animal/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Dor Nociceptiva/tratamento farmacológico , Substância P/farmacologia , Animais , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Medição da Dor , Fosforilação/efeitos dos fármacos , Ratos Wistar , Receptores da Neurocinina-1/metabolismo , Medula Espinal/efeitos dos fármacos , Substância P/administração & dosagem , Substância P/metabolismo , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...