Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 18463, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323763

RESUMO

Although stress significantly impacts on various metabolic syndromes, including diabetes mellitus, most stress management techniques are based on psychological and subjective approaches. This study examined how the presence or absence of the inaudible high-frequency component (HFC) of sounds, which activates deep-brain structures, affects glucose tolerance in healthy participants using the oral glucose tolerance test (OGTT). Sounds containing HFC suppressed the increase in glucose levels measured by incremental area under the curve in the OGTT compared with the otherwise same sounds without HFC. The suppression effect of HFC was more prominent in the older age group and the group with high HbA1c. This suggests that sounds with HFC are more effective in improving glucose tolerance in individuals at a higher risk of glucose intolerance.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Mellitus , Intolerância à Glucose , Humanos , Idoso , Estudos Cross-Over , Teste de Tolerância a Glucose , Glucose , Glicemia/metabolismo , Hemoglobinas Glicadas/metabolismo
2.
PLoS One ; 9(4): e95464, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24788141

RESUMO

The hypersonic effect is a phenomenon in which sounds containing significant quantities of non-stationary high-frequency components (HFCs) above the human audible range (max. 20 kHz) activate the midbrain and diencephalon and evoke various physiological, psychological and behavioral responses. Yet important issues remain unverified, especially the relationship existing between the frequency of HFCs and the emergence of the hypersonic effect. In this study, to investigate the relationship between the hypersonic effect and HFC frequencies, we divided an HFC (above 16 kHz) of recorded gamelan music into 12 band components and applied them to subjects along with an audible component (below 16 kHz) to observe changes in the alpha2 frequency component (10-13 Hz) of spontaneous EEGs measured from centro-parieto-occipital regions (Alpha-2 EEG), which we previously reported as an index of the hypersonic effect. Our results showed reciprocal directional changes in Alpha-2 EEGs depending on the frequency of the HFCs presented with audible low-frequency component (LFC). When an HFC above approximately 32 kHz was applied, Alpha-2 EEG increased significantly compared to when only audible sound was applied (positive hypersonic effect), while, when an HFC below approximately 32 kHz was applied, the Alpha-2 EEG decreased (negative hypersonic effect). These findings suggest that the emergence of the hypersonic effect depends on the frequencies of inaudible HFC.


Assuntos
Encéfalo/fisiologia , Ruído , Eletroencefalografia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...