Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(1): 102763, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36463961

RESUMO

PcyA, a ferredoxin-dependent bilin pigment reductase, catalyzes the site-specific reduction of the two vinyl groups of biliverdin (BV), producing phycocyanobilin. Previous neutron crystallography detected both the neutral BV and its protonated form (BVH+) in the wildtype (WT) PcyA-BV complex, and a nearby catalytic residue Asp105 was found to have two conformations (protonated and deprotonated). Semiempirical calculations have suggested that the protonation states of BV are reflected in the absorption spectrum of the WT PcyA-BV complex. In the previously determined absorption spectra of the PcyA D105N and I86D mutants, complexed with BV, a peak at 730 nm, observed in the WT, disappeared and increased, respectively. Here, we performed neutron crystallography and quantum chemical analysis of the D105N-BV and I86D-BV complexes to determine the protonation states of BV and the surrounding residues and study the correlation between the absorption spectra and protonation states around BV. Neutron structures elucidated that BV in the D105N mutant is in a neutral state, whereas that in the I86D mutant is dominantly in a protonated state. Glu76 and His88 showed different hydrogen bonding with surrounding residues compared with WT PcyA, further explaining why D105N and I86D have much lower activities for phycocyanobilin synthesis than the WT PcyA. Our quantum mechanics/molecular mechanics calculations of the absorption spectra showed that the spectral change in D105N arises from Glu76 deprotonation, consistent with the neutron structure. Collectively, our findings reveal more mechanistic details of bilin pigment biosynthesis.


Assuntos
Pigmentos Biliares , Oxirredutases , Pigmentos Biliares/biossíntese , Pigmentos Biliares/química , Biliverdina/química , Catálise , Cristalografia , Oxirredutases/genética , Oxirredutases/química , Mutação
2.
Proc Jpn Acad Ser B Phys Biol Sci ; 96(9): 440-469, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33177298

RESUMO

γ-Glutamyltranspeptidase (GGT) has been widely used as a marker enzyme of hepatic and biliary diseases and relations between various diseases and its activity have been studied extensively. Nevertheless, several of its fundamental enzymatic characteristics had not been elucidated. We obtained homogeneous preparation of GGTs from bacteria, characterized them, and elucidated its physiological function that is common to mammalian cells, using GGT-deficient E. coli. Prior to GGT of all living organisms, we also identified catalytic nucleophile of E. coli GGT and revealed the post-translational processing mechanism for its maturation, and also its crystal structure was determined. The reaction intermediate was trapped and the structure-based reaction mechanism was presented. As for its application, using its transferase activity, we developed the enzymatic synthesis of various γ-glutamyl compounds that are promising in food, nutraceutical and medicinal industries. We found GGT of Bacillus subtilis is salt-tolerant and can be used as a glutaminase, which is important in food industry, to enhance umami of food, such as soy sauce and miso. We succeeded in converting bacterial GGT to glutaryl-7-aminocephalosporanic acid acylase, which is an important enzyme in cephem antibiotics production, by site-directed and random mutagenesis.


Assuntos
Bactérias/enzimologia , Biocatálise , gama-Glutamiltransferase/química , gama-Glutamiltransferase/metabolismo , Especificidade por Substrato
3.
Antioxidants (Basel) ; 9(8)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731542

RESUMO

Heme oxygenase (HO) catalyzes heme degradation using electrons supplied by NADPH-cytochrome P450 oxidoreductase (CPR). Electrons from NADPH flow first to FAD, then to FMN, and finally to the heme in the redox partner. Previous biophysical analyses suggest the presence of a dynamic equilibrium between the open and the closed forms of CPR. We previously demonstrated that the open-form stabilized CPR (ΔTGEE) is tightly bound to heme-HO-1, whereas the reduction in heme-HO-1 coupled with ΔTGEE is considerably slow because the distance between FAD and FMN in ΔTGEE is inappropriate for electron transfer from FAD to FMN. Here, we characterized the enzymatic activity and the reduction kinetics of HO-1 using the closed-form stabilized CPR (147CC514). Additionally, we analyzed the interaction between 147CC514 and heme-HO-1 by analytical ultracentrifugation. The results indicate that the interaction between 147CC514 and heme-HO-1 is considerably weak, and the enzymatic activity of 147CC514 is markedly weaker than that of CPR. Further, using cryo-electron microscopy, we confirmed that the crystal structure of ΔTGEE in complex with heme-HO-1 is similar to the relatively low-resolution structure of CPR complexed with heme-HO-1 in solution. We conclude that the "open-close" transition of CPR is indispensable for electron transfer from CPR to heme-HO-1.

4.
Curr Med Chem ; 27(21): 3499-3518, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30556496

RESUMO

In mammals, catabolism of the heme group is indispensable for life. Heme is first cleaved by the enzyme Heme Oxygenase (HO) to the linear tetrapyrrole Biliverdin IXα (BV), and BV is then converted into bilirubin by Biliverdin Reductase (BVR). HO utilizes three Oxygen molecules (O2) and seven electrons supplied by NADPH-cytochrome P450 oxidoreductase (CPR) to open the heme ring and BVR reduces BV through the use of NAD(P)H. Structural studies of HOs, including substrate-bound, reaction intermediate-bound, and several specific inhibitor-bound forms, reveal details explaining substrate binding to HO and mechanisms underlying-specific HO reaction progression. Cryo-trapped structures and a time-resolved spectroscopic study examining photolysis of the bond between the distal ligand and heme iron demonstrate how CO, produced during the HO reaction, dissociates from the reaction site with a corresponding conformational change in HO. The complex structure containing HO and CPR provides details of how electrons are transferred to the heme-HO complex. Although the tertiary structure of BVR and its complex with NAD+ was determined more than 10 years ago, the catalytic residues and the reaction mechanism of BVR remain unknown. A recent crystallographic study examining cyanobacterial BVR in complex with NADP+ and substrate BV provided some clarification regarding these issues. Two BV molecules are bound to BVR in a stacked manner, and one BV may assist in the reductive catalysis of the other BV. In this review, recent advances illustrated by biochemical, spectroscopic, and crystallographic studies detailing the chemistry underlying the molecular mechanism of HO and BVR reactions are presented.


Assuntos
Heme Oxigenase (Desciclizante)/metabolismo , Animais , Sítios de Ligação , Heme , Oxirredutases atuantes sobre Doadores de Grupo CH-CH
5.
J Biol Chem ; 295(3): 771-782, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31822504

RESUMO

Phytochromobilin (PΦB) is a red/far-red light sensory pigment in plant phytochrome. PΦB synthase is a ferredoxin-dependent bilin reductase (FDBR) that catalyzes the site-specific reduction of bilins, which are sensory and photosynthesis pigments, and produces PΦB from biliverdin, a heme-derived linear tetrapyrrole pigment. Here, we determined the crystal structure of tomato PΦB synthase in complex with biliverdin at 1.95 Å resolution. The overall structure of tomato PΦB synthase was similar to those of other FDBRs, except for the addition of a long C-terminal loop and short helices. The structure further revealed that the C-terminal loop is part of the biliverdin-binding pocket and that two basic residues in the C-terminal loop form salt bridges with the propionate groups of biliverdin. This suggested that the C-terminal loop is involved in the interaction with ferredoxin and biliverdin. The configuration of biliverdin bound to tomato PΦB synthase differed from that of biliverdin bound to other FDBRs, and its orientation in PΦB synthase was inverted relative to its orientation in the other FDBRs. Structural and enzymatic analyses disclosed that two aspartic acid residues, Asp-123 and Asp-263, form hydrogen bonds with water molecules and are essential for the site-specific A-ring reduction of biliverdin. On the basis of these observations and enzymatic assays with a V121A PΦB synthase variant, we propose the following mechanistic product release mechanism: PΦB synthase-catalyzed stereospecific reduction produces 2(R)-PΦB, which when bound to PΦB synthase collides with the side chain of Val-121, releasing 2(R)-PΦB from the synthase.


Assuntos
Biliverdina/química , Oxirredutases/química , Fitocromo/biossíntese , Conformação Proteica , Aminoácidos/química , Aminoácidos/genética , Pigmentos Biliares/biossíntese , Pigmentos Biliares/química , Biliverdina/genética , Catálise , Cristalografia por Raios X , Ligação de Hidrogênio , Solanum lycopersicum/enzimologia , Oxirredutases/genética , Oxirredutases/ultraestrutura , Fotossíntese/genética , Fitocromo/química , Fitocromo/genética , Estrutura Secundária de Proteína
6.
Curr Opin Struct Biol ; 59: 73-80, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30954759

RESUMO

In mammals, the green heme metabolite biliverdin is converted to a yellow anti-oxidant by NAD(P)H-dependent biliverdin reductase (BVR), whereas in O2-dependent photosynthetic organisms it is converted to photosynthetic or light-sensing pigments by ferredoxin-dependent bilin reductases (FDBRs). In NADP+-bound and biliverdin-bound BVR-A, two biliverdins are stacked at the binding cleft; one is positioned to accept hydride from NADPH, and the other appears to donate a proton to the first biliverdin through a neighboring arginine residue. During the FDBR-catalyzed reaction, electrons and protons are supplied to bilins from ferredoxin and from FDBRs and waters bound within FDBRs, respectively. Thus, the protonation sites of bilin and catalytic residues are important for the analysis of site-specific reduction. The neutron structure of FDBR sheds light on this issue.


Assuntos
Pigmentos Biliares/química , Enzimas/química , Relação Quantitativa Estrutura-Atividade , Animais , Pigmentos Biliares/metabolismo , Catálise , Humanos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Conformação Proteica
7.
Sci Rep ; 7(1): 9387, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28839209

RESUMO

Biogenesis of iron-sulfur (Fe-S) clusters is an indispensable process in living cells. In Escherichia coli, the SUF biosynthetic system consists of six proteins among which SufB, SufC and SufD form the SufBCD complex, which serves as a scaffold for the assembly of nascent Fe-S cluster. Despite recent progress in biochemical and structural studies, little is known about the specific regions providing the scaffold. Here we present a systematic mutational analysis of SufB and SufD and map their critical residues in two distinct regions. One region is located on the N-terminal side of the ß-helix core domain of SufB, where biochemical studies revealed that Cys254 of SufB (SufBC254) is essential for sulfur-transfer from SufE. Another functional region resides at an interface between SufB and SufD, where three residues (SufBC405, SufBE434, and SufDH360) appear to comprise the site for de novo cluster formation. Furthermore, we demonstrate a plausible tunnel in the ß-helix core domain of SufB through which the sulfur species may be transferred from SufBC254 to SufBC405. In contrast, a canonical Fe-S cluster binding motif (CxxCxxxC) of SufB is dispensable. These findings provide new insights into the mechanism of Fe-S cluster assembly by the SufBCD complex.

8.
Nat Commun ; 8: 14397, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28169272

RESUMO

Biliverdin reductase catalyses the last step in haem degradation and produces the major lipophilic antioxidant bilirubin via reduction of biliverdin, using NAD(P)H as a cofactor. Despite the importance of biliverdin reductase in maintaining the redox balance, the molecular details of the reaction it catalyses remain unknown. Here we present the crystal structure of biliverdin reductase in complex with biliverdin and NADP+. Unexpectedly, two biliverdin molecules, which we designated the proximal and distal biliverdins, bind with stacked geometry in the active site. The nicotinamide ring of the NADP+ is located close to the reaction site on the proximal biliverdin, supporting that the hydride directly attacks this position of the proximal biliverdin. The results of mutagenesis studies suggest that a conserved Arg185 is essential for the catalysis. The distal biliverdin probably acts as a conduit to deliver the proton from Arg185 to the proximal biliverdin, thus yielding bilirubin.


Assuntos
Biliverdina/química , Cianobactérias/metabolismo , NADP/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Arginina/química , Bilirrubina/metabolismo , Biliverdina/metabolismo , Sítios de Ligação , Biocatálise , Coenzimas/química , Coenzimas/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Mutagênese , NADP/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Ligação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato
9.
FEBS Lett ; 590(19): 3425-3434, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27596987

RESUMO

Phycocyanobilin:ferredoxin oxidoreductase (PcyA) catalyzes the reduction of biliverdin (BV) to produce phycocyanobilin, a linear tetrapyrrole pigment used for light harvesting and light sensing. Spectroscopic and HPLC analyses inidicate that BV bound to the I86D mutant of PcyA is fully protonated (BVH+ ) and can accept an electron, but I86D is unable to donate protons for the reduction; therefore, compared to the wild-type PcyA, the I86D mutant stabilizes BVH+ . To elucidate the structural basis of the I86D mutation, we determined the atomic-resolution structure of the I86D-BVH+ complex and the protonation states of the essential residues Asp105 and Glu76 in PcyA. Our study revealed that Asp105 adopted a fixed conformation in the I86D mutant, although it had dual conformations in wild-type PcyA which reflected the protonation states of BV. Taken together with biochemical/spectroscopic results, our analysis of the I86D-BVH+ structure supports the hypothesis that flexibility of Asp105 is essential for the catalytic activity of PcyA.


Assuntos
Proteínas de Bactérias/química , Biliverdina/química , Simulação de Acoplamento Molecular , Oxirredutases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biliverdina/metabolismo , Sítios de Ligação , Mutação , Oxirredutases/genética , Oxirredutases/metabolismo , Ligação Proteica , Synechocystis/enzimologia
10.
Bioorg Med Chem ; 24(21): 5340-5352, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27622749

RESUMO

γ-Glutamyl transpeptidase (GGT, EC 2.3.2.2) that catalyzes the hydrolysis and transpeptidation of glutathione and its S-conjugates is involved in a number of physiological and pathological processes through glutathione metabolism and is an attractive pharmaceutical target. We report here the evaluation of a phosphonate-based irreversible inhibitor, 2-amino-4-{[3-(carboxymethyl)phenoxy](methoyl)phosphoryl}butanoic acid (GGsTop) and its analogues as a mechanism-based inhibitor of human GGT. GGsTop is a stable compound, but inactivated the human enzyme significantly faster than the other phosphonates, and importantly did not inhibit a glutamine amidotransferase. The structure-activity relationships, X-ray crystallography with Escherichia coli GGT, sequence alignment and site-directed mutagenesis of human GGT revealed a critical electrostatic interaction between the terminal carboxylate of GGsTop and the active-site residue Lys562 of human GGT for potent inhibition. GGsTop showed no cytotoxicity toward human fibroblasts and hepatic stellate cells up to 1mM. GGsTop serves as a non-toxic, selective and highly potent irreversible GGT inhibitor that could be used for various in vivo as well as in vitro biochemical studies.


Assuntos
Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Lisina/antagonistas & inibidores , Organofosfonatos/farmacologia , gama-Glutamiltransferase/antagonistas & inibidores , Domínio Catalítico/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Lisina/metabolismo , Modelos Moleculares , Estrutura Molecular , Organofosfonatos/síntese química , Organofosfonatos/química , Eletricidade Estática , Relação Estrutura-Atividade , gama-Glutamiltransferase/química , gama-Glutamiltransferase/metabolismo
11.
J Biol Chem ; 290(50): 29717-31, 2015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26472926

RESUMO

ATP-binding cassette (ABC)-type ATPases are chemomechanical engines involved in diverse biological pathways. Recent genomic information reveals that ABC ATPase domains/subunits act not only in ABC transporters and structural maintenance of chromosome proteins, but also in iron-sulfur (Fe-S) cluster biogenesis. A novel type of ABC protein, the SufBCD complex, functions in the biosynthesis of nascent Fe-S clusters in almost all Eubacteria and Archaea, as well as eukaryotic chloroplasts. In this study, we determined the first crystal structure of the Escherichia coli SufBCD complex, which exhibits the common architecture of ABC proteins: two ABC ATPase components (SufC) with function-specific components (SufB-SufD protomers). Biochemical and physiological analyses based on this structure provided critical insights into Fe-S cluster assembly and revealed a dynamic conformational change driven by ABC ATPase activity. We propose a molecular mechanism for the biogenesis of the Fe-S cluster in the SufBCD complex.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Ferro-Enxofre/biossíntese , Transportadores de Cassetes de Ligação de ATP/química , Sequência de Aminoácidos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Modelos Moleculares , Dados de Sequência Molecular , Espalhamento a Baixo Ângulo , Homologia de Sequência de Aminoácidos , Difração de Raios X
12.
J Am Chem Soc ; 137(16): 5452-60, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25872660

RESUMO

Phycocyanobilin, a light-harvesting and photoreceptor pigment in higher plants, algae, and cyanobacteria, is synthesized from biliverdin IXα (BV) by phycocyanobilin:ferredoxin oxidoreductase (PcyA) via two steps of two-proton-coupled two-electron reduction. We determined the neutron structure of PcyA from cyanobacteria complexed with BV, revealing the exact location of the hydrogen atoms involved in catalysis. Notably, approximately half of the BV bound to PcyA was BVH(+), a state in which all four pyrrole nitrogen atoms were protonated. The protonation states of BV complemented the protonation of adjacent Asp105. The "axial" water molecule that interacts with the neutral pyrrole nitrogen of the A-ring was identified. His88 Nδ was protonated to form a hydrogen bond with the lactam O atom of the BV A-ring. His88 and His74 were linked by hydrogen bonds via H3O(+). These results imply that Asp105, His88, and the axial water molecule contribute to proton transfer during PcyA catalysis.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biliverdina/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Synechocystis/enzimologia , Cristalografia , Cristalografia por Raios X , Modelos Moleculares , Difração de Nêutrons , Prótons , Synechocystis/química , Synechocystis/metabolismo
13.
Biomol NMR Assign ; 9(1): 197-200, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25209143

RESUMO

In nature, heme is a prosthetic group that is universally used as a cofactor for heme proteins. It is necessary for the execution of fundamental biological processes including electron transfer, oxidation and metabolism. However, free heme is toxic to cells, because of its capability to enhance oxidative stress, hence its cellular concentration is strictly regulated through multiple mechanisms. Heme oxygenase (HO) serves as an irreplaceable member in the heme degradation system. It is a ubiquitous protein, existing in many species including mammals, higher plants, and interestingly, certain pathogenic bacteria. In the HO reaction, HO catalyzes oxidative cleavage of heme to generate biliverdin and release carbon monoxide and ferrous iron. Because of the beneficial effects of these heme catabolism products, HO plays a key role in iron homeostasis and in defense mechanism against oxidative stress. HO is composed of an N-terminal structured region and a C-terminal membrane-bound region. Furthermore, the soluble form of HO, which is obtainable by excision of the membrane-bound region, retains its catalytic activity. Here, we present the backbone resonance assignments of the soluble form (residues 1-232) of HO-1 in the free and Zn(II) protoporphyrin IX (ZnPP)-bound states, and analyzed the structural differences between the states. ZnPP is a potent enzyme inhibitor, and the ZnPP-bound structure of HO-1 mimics the heme-bound structure. These assignments provide the structural basis for a detailed investigation of the HO-1 function.


Assuntos
Apoenzimas/química , Apoenzimas/metabolismo , Heme Oxigenase-1/química , Heme Oxigenase-1/metabolismo , Ressonância Magnética Nuclear Biomolecular , Protoporfirinas/metabolismo , Animais , Modelos Moleculares , Estrutura Secundária de Proteína , Ratos
15.
Biochemistry ; 54(2): 340-8, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25496210

RESUMO

Heme oxygenase-1 (HO-1) is an enzyme that catalyzes the oxidative degradation of heme. Since free heme is toxic to cells, rapid degradation of heme is important for maintaining cellular health. There have been useful mechanistic studies of the HO reaction based on crystal structures; however, how HO-1 recognizes heme is not completely understood because the crystal structure of heme-free rat HO-1 lacks electron densities for A-helix that ligates heme. In this study, we characterized conformational dynamics of HO-1 using NMR to elucidate the mechanism by which HO-1 recognizes heme. NMR relaxation experiments showed that the heme-binding site in heme-free HO-1 fluctuates in concert with a surface-exposed loop and transiently forms a partially unfolded structure. Because the fluctuating loop is located over 17 Å distal from the heme-binding site and its conformation is nearly identical among different crystal structures including catalytic intermediate states, the function of the loop has been unexamined. In the course of elucidating its function, we found interesting mutations in this loop that altered activity but caused little change to the conformation. The Phe79Ala mutation in the loop changed the conformational dynamics of the heme-binding site. Furthermore, the heme binding kinetics of the mutant was slower than that of the wild type. Hence, we concluded that the distal loop is involved in the regulation of the conformational change for heme binding through the conformational fluctuations. Similar to other enzymes, HO-1 effectively promotes its function using the identified distal sites, which might be potential targets for protein engineering.


Assuntos
Heme Oxigenase-1/metabolismo , Heme/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , Heme Oxigenase-1/química , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica , Ratos
16.
Proc Natl Acad Sci U S A ; 111(7): 2524-9, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24550278

RESUMO

NADPH-cytochrome P450 oxidoreductase (CPR) supplies electrons to various heme proteins including heme oxygenase (HO), which is a key enzyme for heme degradation. Electrons from NADPH flow first to flavin adenine dinucleotide, then to flavin mononucleotide (FMN), and finally to heme in the redox partner. For electron transfer from CPR to its redox partner, the ''closed-open transition'' of CPR is indispensable. Here, we demonstrate that a hinge-shortened CPR variant, which favors an open conformation, makes a stable complex with heme-HO-1 and can support the HO reaction, although its efficiency is extremely limited. Furthermore, we determined the crystal structure of the CPR variant in complex with heme-HO-1 at 4.3-Å resolution. The crystal structure of a complex of CPR and its redox partner was previously unidentified. The distance between heme and FMN in this complex (6 Å) implies direct electron transfer from FMN to heme.


Assuntos
Heme Oxigenase (Desciclizante)/metabolismo , Modelos Moleculares , Complexos Multiproteicos/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Conformação Proteica , Western Blotting , Cromatografia em Gel , Cristalografia por Raios X , Transporte de Elétrons/fisiologia , Heme Oxigenase (Desciclizante)/química , Complexos Multiproteicos/química , NADPH-Ferri-Hemoproteína Redutase/química , Ressonância Magnética Nuclear Biomolecular , Espalhamento de Radiação
17.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 2): 607-14, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24531494

RESUMO

γ-Glutamyltranspeptidase (GGT) is an enzyme that plays a central role in glutathione metabolism, and acivicin is a classical inhibitor of GGT. Here, the structure of acivicin bound to Bacillus subtilis GGT determined by X-ray crystallography to 1.8 Šresolution is presented, in which it binds to the active site in a similar manner to that in Helicobacter pylori GGT, but in a different binding mode to that in Escherichia coli GGT. In B. subtilis GGT, acivicin is bound covalently through its C3 atom with sp2 hybridization to Thr403 Oγ, the catalytic nucleophile of the enzyme. The results show that acivicin-binding sites are common, but the binding manners and orientations of its five-membered dihydroisoxazole ring are diverse in the binding pockets of GGTs.


Assuntos
Bacillus subtilis/química , Proteínas de Bactérias/química , Inibidores Enzimáticos/química , Isoxazóis/química , gama-Glutamiltransferase/química , Bacillus subtilis/enzimologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/química , Escherichia coli/enzimologia , Ácido Glutâmico/química , Helicobacter pylori/química , Helicobacter pylori/enzimologia , Ligantes , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , gama-Glutamiltransferase/antagonistas & inibidores , gama-Glutamiltransferase/genética , gama-Glutamiltransferase/metabolismo
18.
Bioorg Med Chem ; 22(3): 1176-94, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24411479

RESUMO

γ-Glutamyl transpeptidase (GGT) catalyzing the cleavage of γ-glutamyl bond of glutathione and its S-conjugates is involved in a number of physiological and pathological processes through glutathione homeostasis. Defining its Cys-Gly binding site is extremely important not only in defining the physiological function of GGT, but also in designing specific and effective inhibitors for pharmaceutical purposes. Here we report the synthesis and evaluation of a series of glutathione-analogous peptidyl phosphorus esters as mechanism-based inhibitors of human and Escherichia coli GGTs to probe the structural and stereochemical preferences in the Cys-Gly binding site. Both enzymes were inhibited strongly and irreversibly by the peptidyl phosphorus esters with a good leaving group (phenoxide). Human GGT was highly selective for l-aliphatic amino acid such as l-2-aminobutyrate (l-Cys mimic) at the Cys binding site, whereas E. coli GGT significantly preferred l-Phe mimic at this site. The C-terminal Gly and a l-amino acid analogue at the Cys binding site were necessary for inhibition, suggesting that human GGT was highly selective for glutathione (γ-Glu-l-Cys-Gly), whereas E. coli GGT are not selective for glutathione, but still retained the dipeptide (l-AA-Gly) binding site. The diastereoisomers with respect to the chiral phosphorus were separated. Both GGTs were inactivated by only one of the stereoisomers with the same stereochemistry at phosphorus. The strict recognition of phosphorus stereochemistry gave insights into the stereochemical course of the catalyzed reaction. Ion-spray mass analysis of the inhibited E. coli GGT confirmed the formation of a 1:1 covalent adduct with the catalytic subunit (small subunit) with concomitant loss of phenoxide, leaving the peptidyl moiety that presumably occupies the Cys-Gly binding site. The peptidyl phosphonate inhibitors are highly useful as a ligand for X-ray structural analysis of GGT for defining hitherto unidentified Cys-Gly binding site to design specific inhibitors.


Assuntos
Dipeptídeos/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glutationa/análogos & derivados , Compostos de Fósforo/química , gama-Glutamiltransferase/antagonistas & inibidores , gama-Glutamiltransferase/metabolismo , Sítios de Ligação , Técnicas de Química Sintética , Inibidores Enzimáticos/síntese química , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/metabolismo , Glutationa/metabolismo , Humanos , Espectrometria de Massas/métodos , Mimetismo Molecular , Estereoisomerismo , Especificidade por Substrato
19.
Biochem Biophys Res Commun ; 441(1): 13-7, 2013 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24120497

RESUMO

A unique [Ni-Fe-S] cluster (C-cluster) constitutes the active center of Ni-containing carbon monoxide dehydrogenases (CODHs). His(261), which coordinates one of the Fe atoms with Cys(295), is suggested to be the only residue required for Ni coordination in the C-cluster. To evaluate the role of Cys(295), we constructed CODH-II variants. Ala substitution for the Cys(295) substitution resulted in the decrease of Ni content and didn't result in major change of Fe content. In addition, the substitution had no effect on the ability to assemble a full complement of [Fe-S] clusters. This strongly suggests Cys(295) indirectly and His(261) together affect Ni-coordination in the C-cluster.


Assuntos
Aldeído Oxirredutases/química , Aldeído Oxirredutases/metabolismo , Cisteína/metabolismo , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Família Multigênica , Níquel/metabolismo , Peptococcaceae/enzimologia , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Filogenia , Homologia de Sequência de Aminoácidos , Espectrofotometria Ultravioleta , Relação Estrutura-Atividade
20.
Biosci Biotechnol Biochem ; 77(2): 409-12, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23391932

RESUMO

Heat-treated γ-glutamyltranspeptidase of Escherichia coli recovered enzymatic activity after incubation at 4 °C, while heat-treated γ-glutamyltranspeptidase of Bacillus subtilis did not. Fluorescent spectra, CD spectra, and native polyacrylamide gel electrophoresis analysis suggested that the dimer of E. coli γ-glutamyltranspeptidase was separated into protomers by heat-treatment, but was renatured by incubation at 4 °C.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Escherichia coli/enzimologia , Subunidades Proteicas/química , gama-Glutamiltransferase/química , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Desnaturação Proteica , Multimerização Proteica , Redobramento de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Especificidade da Espécie , Temperatura , gama-Glutamiltransferase/genética , gama-Glutamiltransferase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...